Estructuras cambiantes Mientras que gran parte de los trabajos realizados hasta ahora con los análogos del ADN, como el ANP (ácido nucleico peptídico), se han focalizado en las
bases nitrogenadas del ADN (que son complementarias entre sí y forman parejas), ya ancladas a unidades troncales, para diseñar su sistema, Ghadiri tuvo la idea de trabajar con bloques de fabricación más simples.
Si estos bloques tenían lazos que se invirtieran fácilmente -a diferencia que en el ADN o en el ANP- esto podría evitar la necesidad de enzimas, al tiempo que se mantendrían las características claves de la codificación de la información.
Como resultado, los científicos desarrollaron un sistema formado por péptidos y el aminoácido cisteína. Este aminoácido se enlazaría de forma reversible con un compuesto orgánico conocido como
tioéster. Así, los científicos crearon un ácido nucleico peptídico tioéster (tANP), con el que es posible que las bases nitrogenadas del ADN se acoplen y se desacoplen del tANP formando ensamblajes variables.
Al unir el tANP con el ADN, las hebras complementarias de ambos se ensamblan. Estos apareamientos pueden después abrirse añadiendo nuevas hebras complementarias de ADN, para que se generen otras estructuraciones.
Por otro lado, Ghadiri y su equipo también han demostrado que una hebra de tANP puede actuar como plantilla, generando la formación de tANP complementario, aunque todavía no se ha podido lograr la auto-replicación del tANP, que sería un objetivo final de la investigación.
Aplicaciones sorprendentes Debido a que el tANP puede desensamblarse tan fácilmente, sus hebras no pueden transmitir aún información. En esta transmisión es donde estaría la clave de la capacidad del ADN para originar vida, señalan los expertos.
Los científicos exploran formas para conseguir que las unidades de tANP sean transformadas químicamente, hasta que puedan transmitir información. Asimismo, buscan determinar la estructura del tANP, que podría parecerse a la doble hélice de ADN o que quizá ser totalmente distinta.
Ghadiri señala que el trabajo ofrece además algunas posibilidades distantes pero muy interesantes, especialmente si se considera que se podrían crear sistemas similares al del tANP usando constituyentes químicos distintos.
Estos sistemas podrían llevar a la formación de nuevas enzimas u otros productos químicos capaces de catalizar reacciones para usos biomédicos u otros usos.
Asimismo, Ghadiri también se imagina algunas opciones que parecen de ciencia-ficción para materiales relacionados con el tANP, como plásticos que podrían repararse solos al romperse.
Otra posibilidad, relacionada con la forma que tiene el tANP de reconfigurarse, sería crear materiales que pudieran remodelarse a sí mismos, dependiendo de los cambios que haya en su entorno. Los resultados de esta investigación han aparecido publicados en la revista
Science.