Las investigaciones históricas han comprobado que el petróleo, o aceite mineral (petrae = piedra y oleun = aceite, en latín) fue conocido desde la remota antigüedad. Con betún -asfalto derivado del petróleo- se asentaron los ladrillos de la torre de Babel y se calafateó el arca de Noé. Los egipcios lo utilizaron en embalsamamientos por lo menos desde el 7000 a. C. En el siglo III los chinos excavaron pozos y lo aprovecharon como iluminante. Sin embargo, la primera explotación moderna se concreta en 1854 cuando DRAKE, auxiliado por un herrero, perfora un pozo de 21 metros de profundidad en Titusville (Pennsylvania, EE.UU.).
Petróleo, líquido oleoso bituminoso de origen natural compuesto por diferentes sustancias orgánicas. Se encuentra en grandes cantidades bajo la superficie terrestre y se emplea como combustible y materia prima para la industria química. Las sociedades industriales modernas lo utilizan sobre todo para lograr un grado de movilidad por tierra, mar y aire impensable hace sólo 100 años. Además, el petróleo y sus derivados se emplean para fabricar medicinas, fertilizantes, productos alimenticios, objetos de plástico, materiales de construcción, pinturas o textiles y para generar electricidad.
Las naciones de hoy en día dependen del petróleo y sus productos; la estructura física y la forma de vida de las aglomeraciones periféricas que rodean las grandes ciudades son posibles gracias a un suministro de petróleo abundante y barato. Sin embargo, en los últimos años ha descendido la disponibilidad mundial de esta materia, y su coste o costo relativo ha aumentado. Es probable que, a mediados del siglo XXI el petróleo ya no se use comercialmente de forma habitual.
Formación
El petróleo se forma bajo la superficie terrestre por la descomposición de organismos marinos. Los restos de animales minúsculos que viven en el mar —y, en menor medida, los de organismos terrestres arrastrados al mar por los ríos o los de plantas que crecen en los fondos marinos— se mezclan con las finas arenas y limos que caen al fondo en las cuencas marinas tranquilas. Estos depósitos, ricos en materiales orgánicos, se convierten en rocas generadoras de crudo. El proceso comenzó hace muchos millones de años, cuando surgieron los organismos vivos en grandes cantidades, y continúa hasta el presente. Los sedimentos se van haciendo más espesos y se hunden en el suelo marino bajo su propio peso. A medida que van acumulándose depósitos adicionales, la presión sobre los situados más abajo se multiplica por varios miles, y la temperatura aumenta en varios cientos de grados. El cieno y la arena se endurecen y se convierten en esquistos y arenisca; los carbonatos precipitados y los restos de caparazones se convierten en caliza, y los tejidos blandos de los organismos muertos se transforman en petróleo y gas natural.
Una vez formado el petróleo, éste fluye hacia arriba a través de la corteza terrestre porque su densidad es menor que la de las salmueras que saturan los intersticios de los esquistos, arenas y rocas de carbonato que constituyen dicha corteza. El petróleo y el gas natural ascienden a través de los poros microscópicos de los sedimentos situados por encima. Con frecuencia acaban encontrando un esquisto impermeable o una capa de roca densa: el petróleo queda atrapado, formando un depósito. Sin embargo, una parte significativa del petróleo no se topa con rocas impermeables sino que brota en la superficie terrestre o en el fondo del océano. Entre los depósitos superficiales también figuran los lagos bituminosos y las filtraciones de gas natural.
Composición:
Propiedades del petróleo.
El análisis químico revela que el petróleo está casi exclusivamente constituido por hidrocarburos, compuestos formados por dos elementos: carbono e hidrógeno. Esta simplicidad es aparente porque, como el petróleo es una mezcla -y no una sustancia pura- el número de hidrocarburos presentes y sus respectivas proporciones varían dentro de límites muy amplios. Es químicamente incorrecto referirse al “petróleo”, en singular; existen muchos “petróleos”, pero cada uno con su composición química y sus propiedades características. En efecto:
-
Son líquidos insolubles en agua y de menor densidad que ella. Dicha densidad está comprendida entre 0.75 y 0.95 g/ml.
-
Sus colores varían del amarillo pardusco hasta el negro.
-
Algunas variedades son extremadamente viscosas mientras que otras son bastante fluidas.
Es habitual clasificar a los petróleos dentro de tres grandes tipos considerando sus atributos específicos y los subproductos que suministran:
Petróleos asfálticos |
Petróleos parafínicos: |
Petróleos mixtos: |
Negros, viscosos y de elevada densidad: 0.95 g/ml. En la destilación primaria producen poca nafta y abundante fuel oíl, quedando asfalto como residuo. Petróleos asfálticos se extraen del flanco sur del golfo de San Jorge (Chubut y Santa Cruz). |
De color claro, fluidos y de baja densidad: 0.75-0.85 g/ml. Rinden más nafta que los asfálticos. Cuando se refina sus aceites lubricantes se separa parafina. Mendoza y Salta poseen yacimientos de petróleos parafínicos. |
Tienen característi- cas y rendimientos comprendidos entre las otras dos varie-dades principales. Aunque sin ser iguales entre sí, pe-tróleos de Comodoro Rivadavia (Chubut) y Plaza Huincul (Neu-quén) son de base mixta. |
Como en otros combustibles, los compuestos de azufre comunican mal olor al petróleo y sus derivados. Como generan dióxido de azufre: SO2, en la combustión, contribuyen a la contaminación del ambiente. Los petróleos argentinos, por fortuna, contienen menos de 0.5 % S.
La gota de un líquido viscoso desciende lentamente a medida que se deforma. La de un líquido fluido rueda casi esférica.
Evolución histórica del aprovechamiento del petróleo.
Los seres humanos conocen estos depósitos superficiales de petróleo crudo desde hace miles de años. Durante mucho tiempo se emplearon para fines limitados como el calafateado de barcos, la impermeabilización de tejidos o la fabricación de antorchas. En la época del renacimiento, el petróleo de algunos depósitos superficiales se destilaba para obtener lubricantes y productos medicinales, pero la auténtica explotación del petróleo no comenzó hasta el siglo XIX. Para entonces, la Revolución Industrial había desencadenado una búsqueda de nuevos combustibles y los cambios sociales hacían necesario un aceite bueno y barato para las lámparas. El aceite de ballena sólo se lo podían permitir los ricos, las velas de sebo tenían un olor desagradable y el gas del alumbrado sólo llegaba a los edificios de construcción reciente situados en zonas metropolitanas.
La búsqueda de un combustible mejor para las lámparas llevó a una gran demanda de 'aceite de piedra' o petróleo, y a mediados del siglo XIX varios científicos desarrollaron procesos para su uso comercial. Por ejemplo, el británico James Young y otros comenzaron a fabricar diversos productos a partir del petróleo, aunque después Young centró sus actividades en la destilación de carbón y la explotación de esquistos petroleros. En 1852, el físico y geólogo canadiense Abraham Gessner obtuvo una patente para producir a partir de petróleo crudo un combustible para lámparas relativamente limpio y barato, el queroseno. En 1855, el químico estadounidense Benjamin Silliman publicó un informe que indicaba la amplia gama de productos útiles que podían obtenerse mediante la destilación del petróleo.
Con ello empezó la búsqueda de mayores suministros de petróleo. Hacía años que la gente sabía que en los pozos perforados para obtener agua o sal se producían en ocasiones filtraciones de petróleo, por lo que pronto surgió la idea de realizar perforaciones para obtenerlo. Los primeros pozos de este tipo se perforaron en Alemania entre 1857 y 1859, pero el acontecimiento que obtuvo fama mundial fue la perforación de un pozo petrolero cerca de Oíl Creek, en Pennsylvania (Estados Unidos), llevada a cabo por Edwin L. Drake, el Coronel, en 1859. Drake, contratado por el industrial estadounidense George H. Bissell —que también proporcionó a Sillimar muestras de rocas petroleras para su informe— perforó en busca del supuesto 'depósito matriz' del que parece ser, surgían las filtraciones de petróleo de Pennsylvania occidental. El depósito encontrado por Drake era poco profundo (sólo tenía una profundidad de 21,2 metros) y el petróleo era de tipo parafínico, muy fluido y fácil de destilar.
El éxito de Drake marcó el comienzo del rápido crecimiento de la moderna industria petrolera. La comunidad científica no tardó en prestar atención al petróleo, y se desarrollaron hipótesis coherentes para explicar su formación, su movimiento ascendente y su confinamiento en depósitos. Con la invención del automóvil y las necesidades energéticas surgidas en la I Guerra Mundial, la industria del petróleo se convirtió en uno de los cimientos de la sociedad industrial.
origen geológico del petróleo.
Durante la era terciaria en el fondo de los mares se acumularon restos de peces, invertebrados y, probablemente, algas, quedando sepultados por la arena y las arcillas sedimentadas. Las descomposiciones provocadas por microorganismos, acentuadas por altas presiones y elevadas temperaturas posteriores, dieron origen a hidrocarburos. Al comenzar la era cuaternaria los movimientos orogénicos convulsionaron la corteza terrestre y configuraron nuevas montañas, la cordillera de los Andes entre ellas. Los estratos sedimentarios se plegaron y el petróleo migró a través de las rocas porosas, como las areniscas, hasta ser detenidos por anticiclinales -pliegues con forma de A mayúscula - y por fallas que interrumpieron la continuidad de los estratos.
El yacimiento no debe imaginarse como un gran “lago” subterráneo. El petróleo ocupa los intersticios de rocas sedimentarias muy porosas, acompañado habitualmente de gas natural y de agua salada.
Corresponde señalar semejanzas entre carbones y petróleos:
-
Ambos combustibles tuvieron origen orgánico pero se formaron en épocas geológicas distintas.
-
Y, como recursos naturales no renovables, el consumo humano los agotará indefectiblemente.
localización de cuencas petrolíferas.
El hallazgo de yacimientos de petróleo no es obra librada al azar y obedece a una tarea científicamente organizada, que se planifica con mucha antelación. Instrumental de alta precisión y técnicos especializados deben ser trasladados regiones a menudo deshabitadas, en el desierto o en la selva, obligando a construir caminos y sistemas de comunicación, disponer de helicópteros, instalar campamentos y laboratorios, etc. Los estudios realizados se desarrollan según el siguiente ordenamiento:
-
Relevamiento geográfico, que incluye la aerofotografía
-
Relevamiento geológico para identificar terrenos sedimentarios con posibilidad de contener petróleo.
-
Aplicación de métodos geofísicos:
Con gravitómetros se mide la aceleración de gravedad terrestre: g, que disminuye ligeramente donde hay petróleo de menor densidad que las rocas que le rodean. Con magnetómetros se aprecian variaciones del campo magnético. También hay determinaciones de
conductividad eléctrica del terreno. Y, finalmente, se detecta con sismógrafos las ondas sísmicas provocadas por la detonación de cargas explosivas. Todos estos procedimientos son concurrentes y permiten determinar la dirección, extensión e inclinación de los estratos presuntivamente petrolíferos.
-
Ubicado un yacimiento, se perfora el terreno hasta llegar al mismo. Se monta una torre metálica de 40 - 50 metros de altura que sostendrá los equipos y el subsuelo se taladra con un trépano que cumple un doble movimiento: avance y rotación. Tanto el trépano como la barra que lo acciona tienen conductos internos para que circule una suspensión acuosa de bentonita, arcilla amarillenta de adhesividad apropiada. Esa suspensión enfría al trépano y arrastra el material desmenuzado hacia la superficie.
En su boca los pozos tienen 50 centímetros de diámetro pero éste es de menor a mayor profundidad. Antes se perforaba verticalmente pero ahora se trabaja en cualquier dirección usando barras articuladas. Estos dispositivos permiten “dirigir” el trépano, sorteando obstáculos. Así, en Comodoro Rivadavia, se extrae petróleo de yacimientos situados bajo la ciudad sin necesidad de erigir torres en el núcleo urbano.
En Mendoza hay pozos de 1500 a 1800 metros pero en Salta se ha necesitado 4000 metros de profundidad. A medida que progresa la perforación se insertan caños de acero, adosados al terreno con cemento, para impedir desmoronamientos e infiltración de agua. En la proximidad del yacimiento escapan gases. Entonces se extreman las precauciones. En algunas oportunidades la gran presión de dichos gases origina la surgencia natural, espontánea y descontrolada, con riesgos de inflamación. Después el petróleo fluye lentamente siendo conducido a depósitos. Cuando la presión natural disminuye el petróleo se bombea mecánicamente.
El rendimiento promedio de los pozos argentinos no es alto, está comprendido entre 10 y 20 m3 /día. En casos excepcionales se registran hasta 500 m3 /día. Los países anglosajones valúan el volumen extraído en una unidad convencional: el barril. Un barril equivale a 36 galones, cada uno de ellos de 4 ½ litros, de donde:
1 barril = 36 x 4.5 litros = 162 litros = 0.162 m3
Producción primaria
La mayoría de los pozos petroleros se perforan con el método rotatorio. En este tipo de perforación rotatoria, una torre sostiene la cadena de perforación, formada por una serie de tubos acoplados. La cadena se hace girar uniéndola al banco giratorio situado en el suelo de la torre. La broca de perforación situada al final de la cadena suele estar formada por tres ruedas cónicas con dientes de acero endurecido. La roca se lleva a la superficie por un sistema continuo de fluido circulante impulsado por una bomba.
El crudo atrapado en un yacimiento se encuentra bajo presión; si no estuviera atrapado por rocas impermeables habría seguido ascendiendo debido a su flotabilidad hasta brotar en la superficie terrestre. Por ello, cuando se perfora un pozo que llega hasta una acumulación de petróleo a presión, el petróleo se expande hacia la zona de baja presión creada por el pozo en comunicación con la superficie terrestre. Sin embargo, a medida que el pozo se llena de líquido aparece una presión contraria sobre el depósito, y pronto se detendría el flujo de líquido adicional hacia el pozo si no se dieran otras circunstancias. La mayoría de los petróleos contienen una cantidad significativa de gas natural en solución, que se mantiene disuelto debido a las altas presiones del depósito. Cuando el petróleo pasa a la zona de baja presión del pozo, el gas deja de estar disuelto y empieza a expandirse. Esta expansión, junto con la dilución de la columna de petróleo por el gas, menos denso, hace que el petróleo aflore a la superficie.
A medida que se continúa retirando líquido del yacimiento, la presión del mismo va disminuyendo poco a poco, así como la cantidad de gas disuelto. Esto hace que la velocidad de flujo de líquido hacia el pozo se haga menor y se libere menos gas. Cuando el petróleo ya no llega a la superficie se hace necesario instalar una bomba en el pozo para continuar extrayendo el crudo.
Finalmente, la velocidad de flujo del petróleo se hace tan pequeña, y el coste de elevarlo hacia la superficie aumenta tanto, que el coste de funcionamiento del pozo es mayor que los ingresos que pueden obtenerse por la venta del crudo (una vez descontados los gastos de explotación, impuestos, seguros y rendimientos del capital). Esto significa que se ha alcanzado el límite económico del pozo, por lo que se abandona su explotación.
Recuperación mejorada de petróleo
En el apartado anterior se ha descrito el ciclo de producción primaria por expansión del gas disuelto, sin añadir ninguna energía al yacimiento salvo la requerida para elevar el líquido en los pozos de producción. Sin embargo, cuando la producción primaria se acerca a su límite económico es posible que sólo se haya extraído un pequeño porcentaje del crudo almacenado, que en ningún caso supera el 25%. Por ello, la industria petrolera ha desarrollado sistemas para complementar esta producción primaria que utiliza fundamentalmente la energía natural del yacimiento. Los sistemas complementarios, conocidos como tecnología de recuperación mejorada de petróleo, pueden aumentar la recuperación de crudo, pero sólo con el coste adicional de suministrar energía externa al depósito. Con estos métodos se ha aumentado la recuperación de crudo hasta alcanzar una media global del 33% del petróleo presente. En la actualidad se emplean dos sistemas complementarios: la inyección de agua y la inyección de vapor.
Inyección de agua
En un campo petrolero explotado en su totalidad, los pozos pueden perforarse a una distancia de entre 50 y 500 metros, según la naturaleza del yacimiento. Si se bombea agua en uno de cada dos pozos, puede mantenerse o incluso incrementarse la presión del yacimiento en su conjunto. Con ello también puede aumentarse el ritmo de producción de crudo; además, el agua desplaza físicamente al petróleo, por lo que aumenta la eficiencia de recuperación. En algunos depósitos con un alto grado de uniformidad y un bajo contenido en arcilla o barro, la inundación con agua puede aumentar la eficiencia de recuperación hasta alcanzar el 60% o más del petróleo existente. La inyección de agua se introdujo por primera vez en los campos petroleros de Pennsylvania a finales del siglo XIX, de forma más o menos accidental y desde entonces se ha extendido por todo el mundo.
Inyección de vapor
La inyección de vapor se emplea en depósitos que contienen petróleos muy viscosos. El vapor no sólo desplaza el petróleo, sino que también reduce mucho la viscosidad (al aumentar la temperatura del yacimiento), con lo que el crudo fluye más deprisa a una presión dada. Este sistema se ha utilizado mucho en California, Estados Unidos, y Zulia, Venezuela, donde existen grandes depósitos de petróleo viscoso. También se están realizando experimentos para intentar demostrar la utilidad de esta tecnología para recuperar las grandes acumulaciones de petróleo viscoso (bitumen) que existen a lo largo del río Athabasca, en la zona centro - septentrional de Alberta, en Canadá, y del río Orinoco, en el este de Venezuela. Si estas pruebas tienen éxito, la era del predominio del petróleo podría extenderse varias décadas.
Los petróleos argentinos, en general, producen poca cantidad de naftas. El porcentaje promedio respecto del crudo destilado es el 10%. Para aumentarlo se emplea un tercer procedimiento: la destilación secundaria, destilación destructiva o cracking. Las fracciones “pesadas” como el gas oíl y el fuel oíl se calientan a 500ºC, a presiones del orden de 500 atm, en presencia de sustancias auxiliares: catalizadores, que coadyuvan en el proceso. De allí que se mencione el “craking catalítico”. En esas condiciones la molécula de los hidrocarburos más “livianos”, esto es, de menor número de átomos de carbono en su molécula. La siguiente ecuación ilustra el hecho acaecido:
C18H38 = C8H16 + C8H18 + CH4 + C
La ruptura de la molécula de 18 átomos de carbono origina nuevos hidrocarburos, dos de ellos de 8 átomos de carbono cada uno, iguales a los que componen naftas. Otro hidrocarburo formado es el metano: CH4. Y queda un residuo carbonoso: el coque de petróleo.
Es obligación imperiosa de la Argentina dejar de ser un país “con petróleo” para transformarse en un país “petrolero” que cubra sus necesidades y exporte eventualmente los excedentes.
Las reservas mundiales de crudo —la cantidad de petróleo que los expertos saben a ciencia cierta que se pueden extraer de forma económica— suman unos 700.000 millones de barriles, de los que unos 360.000 millones se encuentran en Oriente Próximo.
Proyecciones
Es probable que en los próximos años se realicen descubrimientos adicionales y se desarrollen nuevas tecnologías que permitan aumentar la eficiencia de recuperación de los recursos ya conocidos. En cualquier caso, el suministro de crudo alcanzará hasta las primeras décadas del siglo XXI. Sin embargo, según los expertos no hay casi perspectivas de que los nuevos descubrimientos e invenciones amplíen la disponibilidad de petróleo barato mucho más allá de ese periodo. Por ejemplo, el campo petrolero de Prudhoe Bay, en Alaska, es el mayor descubierto nunca en el hemisferio occidental. Se prevé que la cantidad total de crudo que se podrá recuperar en ese campo será de unos 10.000 millones de barriles, suficientes para cubrir las necesidades actuales de Estados Unidos durante algo menos de dos años; sin embargo, en Occidente sólo se ha descubierto un campo así en más de un siglo de prospecciones. Además, las nuevas perforaciones no han detenido la disminución continua de las reservas mundiales de crudo que comenzó durante la década de 1970.
Alternativas
A la vista de las reservas disponibles y de las pesimistas proyecciones, parece evidente que en el futuro harán falta fuentes de energía alternativas, aunque existen muy pocas opciones si se tienen en cuenta las ingentes necesidades de energía del mundo industrializado. La recuperación comercial de esquistos petroleros y la producción de crudo sintético todavía tienen que demostrar su viabilidad, y hay serias dudas sobre la competitividad de los costes de producción y los volúmenes de producción que pueden lograrse con estas posibles nuevas fuentes.
Los distintos problemas y posibilidades de fuentes alternativas como la energía geotérmica, la energía solar y la energía nuclear se analizan en el artículo Recursos energéticos. El único combustible alternativo capaz de cubrir las enormes necesidades de energía del mundo actual es el carbón, cuya disponibilidad planetaria está firmemente establecida. El aumento previsto de su empleo llevaría aparejado un aumento del uso de la energía eléctrica basada en el carbón, que se utilizaría para un número cada vez mayor de procesos industriales. Es posible que se pueda regular su uso gracias a la moderna tecnología de ingeniería, con un reducido aumento de los costes de capital y de explotación.
Gas licuado de petróleo (GLP), mezcla de gases licuados, sobre todo propano o butano. El GLP se obtiene a partir de gas natural o petróleo, se licúa para el transporte y se vaporiza para emplearlo como combustible de calderas y motores o como materia prima en la industria química. Véase también Recursos energéticos; Combustible gaseoso.
La recuperación asistida es generalmente considerada como la tercer o última etapa de la secuencia de procesamiento del petróleo, en ciertos casos se la considera como una producción terciaria. El primer paso o etapa inicial del procesamiento del petróleo comienza con el descubrimiento del yacimiento, utilizando los mismo recursos que la naturaleza provee para facilitar la extracción y la salida del crudo a la superficie (generalmente se utiliza la expansión de los componentes volátiles y/o el pumping o bombeo forzado para removerlo hacia la superficie. Cuando se produce una considerable disminución de esta energía, la producción declina y se ingresa en la etapa secundaria donde energía adicional es administrada al reservorio por inyección de agua. Cuando la inyección de agua deja de ser efectiva por la evaluación entre una pequeña extracción de crudo y un elevado costo de la operación, se considera de mayor provecho el tratamiento del pozo. Se inicia en este punto el tratamiento terciario o recuperación asistida del pozo de petróleo. El pozo se encuentra en la etapa final de su historia utilizable y por lo tanto se comienza a entregarle al mismo energía química y térmica con el fin de aprovecharlo y recuperar al máximo la producción. Actualmente el desarrollo de la técnica de recuperación permite aplicar este método en cualquier momento de la historia útil del pozo, siempre y cuando sea obvia la necesidad de estimular la producción.
El total de la producción de petróleo, combinando el proceso o etapa primaria y secundaria es del orden del 40 % respecto de la cantidad original de materia prima en el lugar. Por eso, la recuperación asistida es de trascendental importancia en el trabajo con el pozo para aprovechar al máximo el rendimiento económico y útil del mismo.
Antes de iniciar la recuperación asistida, el operador debe recoger tanta información como le sea posible acerca del pozo y del estatus y de las condiciones de saturación del reservorio. Este estudio se realiza mediante ensayos que involucran técnicas analíticas y geológicas acerca de la morfología del terreno. Toda esta cadena de información fundamenta las bases racionales para la predicción de reservas recuperables de petróleo mediante las distintas técnicas que puede involucrar una recuperación asistida. Los procedimiento de recuperación involucran la inyección de compuestos químicos disueltos en agua, inyección de gases miscibles en alternación con las aplicaciones de agua, la inyección de las denominadas micellar solutions (que son microemulsiones compuestas por sulfactantes, alcoholes y aceites crudos.), la inyección de vapor, y la combustión in-situ.
Quizás el dato más crítico acerca de la recuperación asistida es la saturación de los reservorios de petróleo. El inversionista debe evaluar la recuperación estimable de petróleo por aplicación de la recuperación asistida en función de los gastos que se generaran a consecuencia de la implantación de esta técnica, o de los estudios que se deben realizar, o de los equipos nuevos que se deben adaptar a las instalaciones existentes. La elección del proceso también se halla relacionada con la cantidad de petróleo que se estima en el lugar, la profundidad del reservorio, la viscosidad del crudo, etcétera. Consecuentemente, numerosos métodos de recuperación han sido descubiertos recientemente para la mejor adaptación a las necesidades y requerimientos del reservorio saturado.
El procedimiento químico general de una recuperación asistida, utilizando el método específico de polímeros alcalinos. Por lo general, la introducción de productos químicos a un pozo se encuentra precedidas por un preflush (esto consiste en la inyección de agua de baja salinidad o de contenidos salinos determinados por adición a la misma de cantidades específicas.) para producir un buffer acuoso compatible entre el reservorio de alta salinidad y las soluciones químicas, las cuales pueden ser adversamente afectadas por las sales en solución. Los aditivos químicos son del tipo de detergentes (generalmente petróleosulfonados.), polímeros orgánicos (para incrementar la eficacia del removido en un reservorio heterogéneo.) y micellar solutions. La solución alcalina u otras soluciones son inyectadas luego de que se halla realizado el preflush del pozo. Dicha inyección se halla proseguida por la inyección de una solución de polímeros ( usualmente un poliacrilamida o polisacárido) para incrementar la viscosidad del fluido, ganar espacio y minimizar pérdidas por dilución o channeling. Finalmente, la salinidad del agua adicionada que siga a la inyección del polímero es aumentada respecto de la concentración normal que caracterizan a los fluidos petroquímicos.
Otro tipo de recuperación asistida de reservorio saturado, consiste en la inyección de gas y desplazamiento del crudo por soluciones miscibles como se observa en la figura 1.2. La adición de dióxido de carbono es una de las técnicas más utilizadas en las instalaciones de recuperación en la actualidad. El mecanismo principal para la movilización del petróleo por gases miscibles son:
-
Disminución de la viscosidad del fluido hasta solubilización del gas en el crudo,
-
y aumento del volumen de la fase oleica.
La solución de dióxido de carbono, la cual es altamente soluble en el petróleo crudo cuando se aplica a alta presión, provoca una apreciable ondulación del petróleo. Tres tipos de inyección de dióxido de carbono han sido descubiertas y aplicadas: 1) Inyección del gas en porciones seguidas de la adición de agua, como se ilustra en la figura 1.2; 2) inyección de agua saturada con el dióxido de carbono; y finalmente, 3) inyección del gas a presión elevada.
Diversas técnicas han emergido de métodos térmicos de recuperación asistida y la elección de uno u otro depende de la evaluación del reservorio y de la economía. Los procedimientos térmicos, son especialmente utilizados en la recuperación de crudos pesados, del orden APIº< 20.
Inundación por polímeros.
La inundación por polímeros consiste en agregar polímeros al agua subterránea, para hacer decrecer su movilidad. El resultado es un incremento en su viscosidad y a la vez decrece la permeabilidad de la fase acuosa que ocurre con algunos polímeros, causa una de su baja el radio de movilidad. Esta baja incrementa la eficiencia de la inundación a través de un aumento de la eficiencia de recuperación y una disminución de la zona de saturación de petróleo. La irreversible saturación del petróleo no decrece hasta que la saturación del petróleo lo haga. La mayor eficiencia en la recuperación constituye el incentivo económico para la utilización de inundación por polímeros, generalmente, la inundación por polímeros puede ser económicamente viable únicamente cuando el radio de movilidad de las aguas subterráneas es grande, el reservorio es altamente heterogéneo o una combinación de los mismos.
La catástrofe más grave de la historia
El 24 de marzo de 1989 ocurrió en el sur de Alaska el derrame de petróleo que -según Greenpeace- "mató más vida silvestre que ningún otro derrame conocido en la historia". El barco cisterna Exxon Valdez encalló en el arrecife de Bligh, en la bahía Prince William, lanzando al mar 41.635.000 litros de petróleo crudo.