Eratóstenes era hijo de Aglaos. Estudió en Alejandría y durante algún tiempo en Atenas. Fue discípulo de Aristón de Quíos, de Lisanias de Cirene y del poeta Calímaco y también gran amigo de Arquímedes. En el año 236 a. C., Ptolomeo III le llamó para que se hiciera cargo de la Biblioteca de Alejandría, puesto que ocupó hasta el fin de sus días. La Suda afirma que, tras perder la vista, se dejó morir de hambre a la edad de 80 años; sin embargo, Luciano dice que llegó a la edad de 82 años; también Censorinosostiene que falleció cuando tenía 82 años.
A Eratóstenes se le atribuye la invención, hacia 255 a. C., de la esfera armilar que aún se empleaba en el siglo XVII. Aunque debió de usar este instrumento para diversas observaciones astronómicas, sólo queda constancia de la que le condujo a la determinación de la oblicuidad de la eclíptica. Determinó que el intervalo entre los trópicos (el doble de la oblicuidad de la eclíptica) equivalía a los 11/83 de la circunferencia terrestre completa, resultando para dicha oblicuidad 23º 51' 19", cifra que posteriormente adoptaría el astrónomo Claudio Ptolomeo.
Según algunos historiadores, Eratóstenes obtuvo un valor de 24º y el refinamiento del resultado se debió hasta 11/83 al propio Ptolomeo. Además, según Plutarco, de sus observaciones astronómicas durante los eclipses dedujo que la distancia al Sol era de 804 000 000 estadios, la distancia a la Luna 780 000 estadios y, según Macrobio, que el diámetro del Sol era 27 veces mayor que el de la Tierra. Realmente el diámetro del Sol es 109 veces el de la Tierra y la distancia a la Luna es casi tres veces la calculada por Eratóstenes, pero el cálculo de la distancia al Sol, admitiendo que el estadio empleado fuera de 185 metros, fue de 148 752 060 km, muy similar a la unidad astronómica actual. A pesar de que se le atribuye frecuentemente la obra Katasterismoi, que contiene la nomenclatura de 44 constelaciones y 675 estrellas, los críticos niegan que fuera escrita por él, por lo que se suele designar Pseudo-Eratóstenes a su autor.
En el solsticio de verano, los rayos solares inciden perpendicularmente sobre Siena (Asuán). En Alejandría, más al norte, midiendo la altura de un edificio y la longitud de la sombra que proyecta, se puede determinar el ángulo formado con el plano de la eclíptica, en el que se encuentran el Sol y la ciudad de Siena, ángulo que es precisamente la diferencia de latitud entre ambas ciudades. Conocida ésta, basta medir el arco de circunferencia y extrapolar el resultado a la circunferencia completa (360º).
Reconstrucción del siglo XIX (según Bunbury) del mapa de Eratóstenes del mundo conocido en su época.
Sin embargo, el principal motivo de su celebridad es sin duda la determinación del tamaño de la Tierra. Para ello inventó y empleó un método trigonométrico, además de las nociones de latitud y longitud, al parecer ya introducidas por Dicearco, por lo que bien merece el título de padre de la geodesia.
Por referencias obtenidas de un papiro de su biblioteca, sabía que en Siena (hoy Asuán, Egipto) el día del solsticio de verano los objetos verticales no proyectaban sombra alguna y la luz alumbraba el fondo de los pozos; esto significaba que la ciudad estaba situada justamente sobre la línea del trópico y su latitud era igual a la de la eclíptica que ya conocía. Eratóstenes, suponiendo que Siena y Alejandría tenían la misma longitud (realmente distan 3º) y que el Sol se encontraba tan alejado de la Tierra que sus rayos podían suponerse paralelos, midió la sombra en Alejandría el mismo día del solsticio de verano al mediodía, demostrando que el cenit de la ciudad distaba 1/50 parte de la circunferencia, es decir, 7º 12' del de Alejandría. Según Cleomedes, Eratóstenes se sirvió del scaphium o gnomon (un protocuadrante solar) para el cálculo de dicha cantidad.
Posteriormente, tomó la distancia estimada por las caravanas que comerciaban entre ambas ciudades, aunque bien pudo obtener el dato en la propia Biblioteca de Alejandría, fijándola en 5000 estadios, de donde dedujo que la circunferencia de la Tierra era de 250 000 estadios, resultado que posteriormente elevó hasta 252 000 estadios, de modo que a cada grado correspondieran 700 estadios. También se afirma que Eratóstenes, para calcular la distancia entre las dos ciudades, se valió de un regimiento de soldados que diera pasos de tamaño uniforme y los contara.
Admitiendo que Eratóstenes usase el estadio ático-italiano de 184.8 m, que era el que solía utilizarse por los griegos de Alejandría en aquella época, el error cometido sería de 6.192 kilómetros (un 15 %). Sin embargo, hay quien defiende que empleó el estadio egipcio (300 codos de 52,4 cm), en cuyo caso la circunferencia polar calculada hubiera sido de 39614 km, frente a los 40008 km considerados en la actualidad, es decir, un error de menos del 1%.
Ahora bien, es imposible que Eratóstenes diera con la medida exacta de la circunferencia de la Tierra debido a errores en los supuestos que calculó. Tuvo que haber tenido un margen de error considerable y por lo tanto no pudo haber usado el estadio egipcio:2
Supuso que la Tierra es perfectamente esférica, lo que no es cierto. Un grado de latitud no representa exactamente la misma distancia en todas las latitudes, sino que varía ligeramente de 110,57 km en el Ecuador hasta 111,7 km en los Polos. Por eso no podemos suponer que 7º entre Alejandría y Siena representen la misma distancia que 7º en cualquier otro lugar a lo largo de todo el meridiano.
Supuso que Siena y Alejandría se encontraban situadas sobre un mismo meridiano, lo cual no es así, ya que hay una diferencia de 3 grados de longitud entre ambas ciudades.
La distancia real entre Alejandría y Siena (hoy Asuán) no es de 924 km (5000 estadios ático-italiano de 184,8 m por estadio), sino de 843 km (distancia aérea y entre los centros de las dos ciudades), lo que representa una diferencia de 81 km.
Realmente Siena no está ubicada exactamente sobre el paralelo del trópico de cáncer (los puntos donde los rayos del sol caen verticalmente a la tierra en el solsticio de verano). Actualmente se encuentra situada a 72 km (desde el centro de la ciudad). Pero debido a que las variaciones del eje de la Tierra fluctúan entre 22,1 y 24,5º en un período de 41000 años, hace 2000 años se encontraba a 41 km.
La medida de la sombra que se proyectó sobre la vara de Eratóstenes hace 2.200 años debió ser de 7,5º o 1/48 parte de una circunferencia y no 7,2º o 1/50 parte. Puesto que en aquella época no existía el cálculo trigonométrico, para calcular el ángulo de la sombra, Eratóstenes pudo haberse valido de un compás,3 para medir directamente dicho ángulo, lo que no permite una medida tan precisa.
Para la construcción de la Catedral de Bariloche, el arquitecto Alejandro Bustillo ofreció su proyecto gratuitamente. Su sentimiento se orientó en un estilo neogótico con reminiscencias francesas. Un proyecto que incluía, buscado o no, algo de las herméticas ciencias medievales.3
El edificio tiene forma de cruz latina con formas sobrias. Su cabecera está orientada exactamente al Este, de modo que el sol ilumina desde el comienzo del día. Así también se logra esfumar las diversas variaciones de la luz, al pasar por los vitrales. Vista desde el exterior, se generan planos de luz y sombra acentuando sus rasgos arquitectónicos ya mencionados.
El material usado para su edificación fue la “piedra blanca”. Es curioso notar, expresado por algunos feligreses, como el efecto que genera este mineral, puede transportarnos a un mundo interior de sensible austeridad. Impresión vinculada acaso con la grutas de los primeros cristianos, que encontraban en estos medios de construcción (piedra) los medios para edificar.
El techo, es de pizarra negra y posee un chapitel de 69 metros en forma de aguja.45
Don Giovanni Battista Andreoli, talló la figura de la Virgen María. Utilizó la misma piedra blanca del resto del edificio, extraída de la cantera del Cerro Carbón, para lograr una bellísima imagen, que se encuentra en el exterior sobre el gran portal de la Catedral. Fue denominada por el propio autor de la obra, “La Madonna”. E insistió en mantener en el anonimato su nombre aduciendo que: “son cosas entre Dios y yo”.
Alejandro Bustillo formaba parte de un equipo de urbanistas, coordinados por presidente de Parques Nacionales, el doctor Exequiel Bustillo (hermano de Alejandro Bustillo). Este grupo, entre quienes se encontraban además Ernesto Estrada y Miguel Ángel Cesari, fue el propulsor de obras tales como el Centro Cívico, el Hotel Llao Llao, entre otros. Dado que las características del proyecto, por su envergadura, hablaba de algo importante y difícil de solventar por la comunidad de fieles, desde lo económico, la nación ofreció el dinero para su concreción.
En 1942 se regularizó el dominio del terreno donde emplazarla y dos años más tarde se concluyó con la estructura de hormigón realizada por la Compañía General de Construcciones con la conducción del Ingeniero Pedro Faukland, actuando como capataz don Esteban Capitanich. Fue cuando comienzan su labor los picapedreros.
Luego se nombró capataz del equipo a José Lukman, esloveno de nacimiento, picapedrero por herencia, recibido en su juventud tras cuatro años de escuela tallando en las cavas romanas de Aurisinia. Estuvo a cargo de un grupo de alrededor de 20 personas, donde solo 6 conocían el oficio completamente, el resto eran aprendices. Él fue quien diseñó y labró las molduras que le dan elegancia al conjunto, y quien a golpes de maza dio forma a la mayoría de los arcos y a la piedra de encaje.
El 4 de junio de 2004 llega desde Achao, isla de Chiloé, Chile, una réplica de una imagen perdida y que acompañó al primer asentamiento jesuita a orillas del Nahuel Huapi.6 Dicha réplica fue realizada por el escultor chilote Milton Muñoz en un bloque de milenario alerce. Hoy dicha imagen se sitúa en el altar mayor de la catedral y es la actual patrona de la ciudad.
Exequiel Bustillo promocionó una Comisión de Damas, que, presidida por la señora Isabel Nevares de Ortiz Basualdo - hermana del obispo Jaime de Nevares- logró reunir mediante donaciones el dinero suficiente para encargar los vitrales.
Los vitrales fueron diseñados por un francés llamado Enrique A. Thomas, en Buenos Aires y realizados en Francia. Para determinar qué imágenes corresponderían al templo, el doctor Exequiel Bustillo se comunicó con monseñor Esandi sugiriendo tibiamente sobre la posibilidad de que estas imágenes tuviesen vinculaciones regionales, participación que el sacerdote aceptó con entusiasmo. Y así surgió del taller de Enrique Thomas una preciosa imagen de Nuestra Señora del Nahuel Huapi (patrona del templo) e imágenes vernáculas.
Los vitrales fueron colocados en 1947, quedando la obra concluida por fuera, con el interior aún en bruto y piso de cemento alisado. Aun así los vecinos, entre ellos Luis Fernández y Pablo Depellegrin, proveyeron algunos bancos. En el campanario, sin campanas, se instaló un carrillón con amplificadores, que por largos años, acompañó con su excelente sonido de campanas al pueblo de Bariloche.
Si bien su exterior se encuentra terminado, no ocurre lo mismo con su interior el cual nunca fue completamente terminado, y por mucho tiempo solo mostraba las estructuras de hormigón desnudo y el piso de cemento alisado. .
Recién en 1994 se realizan una serie de trabajos destinados a mejorar el piso, proveer a la catedral de un sistema de calefacción sueco y mejorar el aspecto de los muros interiores hasta 6 m de alto tapizándolos con celdas prefabricadas realizadas con la piedra original de la construcción.
Meridian Room (or Cassini Room) at the Paris Observatory, 61 avenue de l'Observatoire (14th arrondissement). The Paris meridian is traced on the floor.
The Paris meridian is a meridian line running through the Paris Observatory in Paris, France – now longitude 2°20′14.02500″ East. It was a long-standing rival to the Greenwich meridian as the prime meridian of the world. The "Paris meridian arc" or "French meridian arc" (French: la Méridienne de France) is the name of the meridian arc measured along the Paris meridian.[1]
The French meridian arc was important for French cartography, since the triangulations of France began with the measurement of the French meridian arc. Moreover, the French meridian arc was important for geodesy as it was one of the meridian arcs which were measured to determine the figure of the Earth via the arc measurement method.[1] The determination of the figure of the Earth was a problem of the highest importance in astronomy, as the diameter of the Earth was the unit to which all celestial distances had to be referred.[2]
In the year 1634, France ruled by Louis XIII and Cardinal Richelieu, decided that the Ferro Meridian through the westernmost of the Canary Islands should be used as the reference on maps, since El Hierro (Ferro) was the most western position of the Ptolemy's world map.[3] It was also thought to be exactly 20 degrees west of Paris.[3] The astronomers of the French Academy of Sciences, founded in 1666, managed to clarify the position of El Hierro relative to the meridian of Paris, which gradually supplanted the Ferro meridian.[3] In 1666, Louis XIV of France had authorized the building of the Paris Observatory. On Midsummer's Day 1667, members of the Academy of Sciences traced the future building's outline on a plot outside town near the Port Royal abbey, with Paris meridian exactly bisecting the site north–south.[4] French cartographers would use it as their prime meridian for more than 200 years.[3] Old maps from continental Europe often have a common grid with Paris degrees at the top and Ferro degrees offset by 20 at the bottom.[3]
A French astronomer, Abbé Jean Picard, measured the length of a degree of latitude along the Paris meridian (arc measurement) and computed from it the size of the Earth during 1668–1670.[1] The application of the telescope to angular instruments was an important step. He was the first who in 1669, with the telescope, using such precautions as the nature of the operation requires, measured a precise arc of meridian (Picard's arc measurement). He measured with wooden rods a baseline of 5,663 toises, and a second or base of verification of 3,902 toises; his triangulation network extended from Malvoisine, near Paris, to Sourdon, near Amiens. The angles of the triangles were measured with a quadrant furnished with a telescope having cross-wires. The difference of latitude of the terminal stations was determined by observations made with a sector on a star in Cassiopeia, giving 1° 22′ 55″ for the amplitude. The terrestrial degree measurement gave the length of 57,060 toises, whence he inferred 6,538,594 toises for the Earth's diameter.[2][5]
Four generations of the Cassini family headed the Paris Observatory.[6] They directed the surveys of France for over 100 years.[6] Hitherto geodetic observations had been confined to the determination of the magnitude of the Earth considered as a sphere, but a discovery made by Jean Richer turned the attention of mathematicians to its deviation from a spherical form. This astronomer, having been sent by the Academy of Sciences of Paris to the island of Cayenne (now in French Guiana) in South America, for the purpose of investigating the amount of astronomical refraction and other astronomical objects, observed that his clock, which had been regulated at Paris to beat seconds, lost about two minutes and a half daily at Cayenne, and that to bring it to measure mean solar time it was necessary to shorten the pendulum by more than a line (about 1⁄12th of an in.). This fact, which was scarcely credited till it had been confirmed by the subsequent observations of Varin and Deshayes on the coasts of Africa and America, was first explained in the third book of Newton’s Principia, who showed that it could only be referred to a diminution of gravity arising either from a protuberance of the equatorial parts of the Earth and consequent increase of the distance from the centre, or from the counteracting effect of the centrifugal force. About the same time (1673) appeared Christiaan Huygens’ De Horologio Oscillatorio, in which for the first time were found correct notions on the subject of centrifugal force. It does not, however, appear that they were applied to the theoretical investigation of the figure of the Earth before the publication of Newton's Principia. In 1690 Huygens published his De Causa Gravitatis, which contains an investigation of the figure of the Earth on the supposition that the attraction of every particle is towards the centre.
Between 1684 and 1718 Giovanni Domenico Cassini and Jacques Cassini, along with Philippe de La Hire, carried a triangulation, starting from Picard's base in Paris and extending it northwards to Dunkirk and southwards to Collioure. They measured a base of 7,246 toises near Perpignan, and a somewhat shorter base near Dunkirk; and from the northern portion of the arc, which had an amplitude of 2° 12′ 9″, obtained 56,960 toises for the length of a degree; while from the southern portion, of which the amplitude was 6° 18′ 57″, they obtained 57,097 toises. The immediate inference from this was that, with the degree diminishing with increasing latitude, the Earth must be a prolate spheroid. This conclusion was totally opposed to the theoretical investigations of Newton and Huygens, and accordingly the Academy of Sciences of Paris determined to apply a decisive test by the measurement of arcs at a great distance from each other – one in the neighbourhood of the equator, the other in a high latitude. Thus arose the celebrated French Geodesic Missions [fr], to the Equator and to Lapland, the latter directed by Pierre Louis Maupertuis.[2]
Map of France in 1720
In 1740 an account was published in the Paris Mémoires, by Cassini de Thury, of a remeasurement by himself and Nicolas Louis de Lacaille of the meridian of Paris. With a view to determine more accurately the variation of the degree along the meridian, they divided the distance from Dunkirk to Collioure into four partial arcs of about two degrees each, by observing the latitude at five stations. The results previously obtained by Giovanni Domenico and Jacques Cassini were not confirmed, but, on the contrary, the length of the degree derived from these partial arcs showed on the whole an increase with increasing latitude.[2]
Escultura romana de Cleopatra con una diadema real, de mediados del siglo i a. C. (época de sus visitas a Roma en 46-44 a. C.) encontrada en una villa italiana en la Vía Apia, actualmente expuesta en el Altes Museum.123n 1
En 58 a. C. presuntamente acompañó a su padre, Ptolomeo XII, durante su exilio en Roma tras una revuelta en Egipto (para entonces un Estado cliente de Roma), lo que permitió que su hermana mayor, Berenice IV, reclamara el trono de Ptolomeo. Berenice murió en batalla en 55 a. C., cuando su padre volvió a Egipto con ayuda militar romana. Cuando Ptolomeo murió en 51 a. C., Cleopatra y su hermano menor, Ptolomeo XIII, accedieron al trono como corregentes, pero la ruptura entre ambos desató una guerra civil.
Tras la derrota sufrida en 48 a. C. en la batalla de Farsalia por parte de su rival Julio César durante la segunda guerra civil romana, el estadista romano Pompeyo el Grande huyó a Egipto. Pompeyo había sido aliado político del padre de Cleopatra, pero a sugerencia de los eunucos de su corte, Ptolomeo XIII ordenó emboscar y asesinar a Pompeyo mientras César ocupaba Alejandría en persecución de su enemigo. Como cónsul de la República romana, César trató de reconciliar a Ptolomeo XIII con su hermana Cleopatra, pero Potino el Eunuco, consejero principal del monarca egipcio, creía que los términos que proponía el cónsul beneficiaban a Cleopatra, por lo que sus fuerzas sitiaron a César y Cleopatra en Alejandría. El asedio se levantó gracias a la llegada de aliados de César a comienzos de 47 a. C. y Ptolomeo XIII murió poco después en la batalla del Nilo. Arsínoe IV, media hermana de Cleopatra que había liderado el asedio, se exilió en Éfeso. César, ya elegido dictador, declaró a Cleopatra y a su hermano menor Ptolomeo XIV cogobernantes de Egipto. Sin embargo, el general romano inició una relación sentimental privada con Cleopatra de la que nació Cesarión. Cleopatra viajó a Roma en 46 y 44 a. C. como reina vasalla y se alojó en la villa de César. Cuando este fue asesinado en 44 a. C., Cleopatra intentó que su hijo fuera designado heredero, pero no pudo debido al ascenso al poder de Octavio (posteriormente conocido como Augusto y que sería el primer emperador de Roma en 27 a. C.). Entonces, Cleopatra ordenó asesinar a su hermano Ptolomeo XIV y elevó a su hijo Cesarión como corregente de Egipto, con el nombre de Ptolomeo XV.
Durante la tercera guerra civil de la República romana (43-42 a. C.), Cleopatra se alió con el Segundo Triunvirato, formado por Octavio (sobrino nieto y heredero de César), Marco Antonio y Lépido. Tras su encuentro en Tarso en 41 a. C., la gobernante egipcia inició una relación con Marco Antonio de la que nacieron tres hijos: Alejandro Helios, Cleopatra Selene II y Ptolomeo Filadelfo. Antonio usó su autoridad como triunviro para ejecutar a Arsínoe IV, cumpliendo el deseo de Cleopatra, y se apoyó cada vez más en la reina egipcia tanto para obtener financiación como ayuda militar durante sus invasiones del imperio parto y del Reino de Armenia. En las Donaciones de Alejandría, los hijos de Cleopatra con Marco Antonio fueron nombrados gobernantes sobre varios territorios bajo la autoridad de Antonio. Este hecho, unido al matrimonio de Marco Antonio con Cleopatra después de su divorcio de Octavia la Menor, hermana de Octavio, desató la cuarta guerra civil de la República romana. Después de iniciar una guerra de propaganda, Octavio forzó a huir a los aliados de Antonio en el senado romano y le declaró la guerra a Cleopatra en 32 a. C. La flota de guerra de Marco Antonio y Cleopatra fue derrotada por la de Octavio, bajo el mando de su general Agripa, en la batalla de Accio en 31 a. C., tras lo cual las tropas romanas de Octavio invadieron Egipto en 30 a. C. y derrotaron a las de Antonio, tras lo cual éste se suicidó. Cuando Cleopatra se enteró de que Octavio pretendía llevarla a Roma para exhibirla durante su procesión de triunfo, también se suicidó tomando veneno, si bien popularmente se cree que lo hizo dejándose morder por una áspide.
La forma latina de Cleopatra proviene del griego antiguoKleopátrā (en griego: Κλεοπᾰ́τρᾱ), que significa «gloria de su padre» en la forma femenina.8 Este se deriva de kléos (κλέος) ‘gloria’ y patḗr (πᾰτήρ) ‘padre’, utilizando el genitivopatros (πατρός).9 La forma masculina se habría escrito como Kleópatros (Κλεόπᾰτρος) o Pátroklos (Πάτροκλος).9
En cuanto a la acentuación, la bibliografía en español utiliza las formas Filopator, Filópator y Filopátor, optándose a lo largo de este artículo por la última, de acuerdo con la transcripción al español de los nombres propios griegos en Galiano (1969, p. 81).