Página principal  |  Contacto  

Correo electrónico:

Contraseña:

Registrarse ahora!

¿Has olvidado tu contraseña?

DESENMASCARANDO LAS FALSAS DOCTRINAS
 
Novedades
  Únete ahora
  Panel de mensajes 
  Galería de imágenes 
 Archivos y documentos 
 Encuestas y Test 
  Lista de Participantes
 YHWH (DIOS PADRE) EL UNICO DIOS 
 JESUCRISTO NUESTRO MESIAS JUDIO 
 LOS DIEZ MANDAMIENTOS DE LA BIBLIA 
 MEJORE SU CARACTER Y SU VIDA 
 YOU TUBE-MAOR BA OLAM-LINKS 
 YOU TUBE-MAOR BA OLAM-LINKS II 
 BIBLIAS/CONCORDANCIA/LIBROS 
 MAYOR ENEMIGO DEL HOMBRE ES UNO MISMO 
 ¿LA TORA ES MACHISTA? -MENSAJE ESOTERICO Y EXOTERICO 
 ¿ES INMORTAL EL ALMA?- FALACIA DE LA ENCARNACION Y REENCARNACION 
 EL ISLAM TIENE ORIGEN UNITARIO ADOPCIONISTA 
 ANTIGUO TESTAMENTO-ESTUDIO POR VERSICULOS 
 NUEVO TESTAMENTO-ESTUDIOS POR VERSICULOS 
 NUEVO TESTAMENTO II-ESTUDIOS POR VERSICULOS 
 NUEVO TESTAMENTO III-ESTUDIOS POR VERSICULOS 
 CRISTO NO TUVO PREEXISTENCIA 
 ¿QUE ES EL ESPIRITU SANTO? 
 
 
  Herramientas
 
SEA UN CIENTIFICO CON LA BIBLIA: ITER (INTERNATIONAL THERMONUCLEAR EXPERIMENTAL REACTOR) CADARACHE (FRANCE)
Elegir otro panel de mensajes
Tema anterior  Tema siguiente
Respuesta  Mensaje 1 de 3 en el tema 
De: BARILOCHENSE6999  (Mensaje original) Enviado: 14/09/2024 02:30

ITER

Apariencia
 
Texto
Anchura
Color (beta)
 
ITER
Tipo proyecto de investigación, Tokamak y megaproyecto
Objetivos energía de fusión
Fundación 24 de octubre de 2006 y 2006
Sede central Cadarache (Francia)
Coordenadas 43°42′28″N 5°46′39″E
Sitio web www.iter.org

El ITER,12​ (International Thermonuclear Experimental Reactor, en español Reactor Termonuclear Experimental Internacional), es un experimento científico a gran escala que intenta producir un plasma de fusión que tenga diez veces más potencia térmica que la potencia necesaria para calentar el plasma. Como sistema de reactor, el ITER será equivalente a un reactor de potencia cero (neto).3​ Los participantes en el diseño conceptual de actividades del ITER eligieron esta palabra para expresar sus esperanzas comunes en que el proyecto podría conducir al desarrollo de una nueva forma de energía. Es un proyecto de gran complejidad ideado en 1986 en la Unión Soviética (Tokamak), para demostrar la factibilidad científica y tecnológica de la fusión nuclear. El ITER se está construyendo en Cadarache (Francia) y costará 24 000 millones de euros aproximadamente, convirtiéndolo en el quinto proyecto más costoso de la historia, después del Programa Apolo, de la Estación Espacial Internacional, del Proyecto Manhattan y del desarrollo del sistema GPS.4ITER, además, significa El camino en latín, y este doble sentido refleja el rol del ITER en el perfeccionamiento de la fusión nuclear como una fuente de energía para usos pacíficos e innovadores.

Miembros

[editar]
Los participantes del proyecto ITER
MiembroPorcentaje de

financiación (aprox)

 Unión Europea 40 %5
Bandera de Estados Unidos Estados Unidos 10 %
 Rusia 10 %
Bandera de la República Popular China China 10 %
Bandera de la India India 10 %
Bandera de Japón Japón 10 %
Bandera de Corea del Sur Corea del Sur 10 %

Objetivos de ITER 4.12

[editar]

Su objetivo es probar todos los elementos necesarios para la construcción y funcionamiento de un reactor de fusión nuclear que serviría de demostración comercial, además de reunir los recursos tecnológicos y científicos de los programas de investigación desarrollados en ese entonces por la Unión Soviética, los Estados Unidos, la Unión Europea (a través de EURATOM) y Japón. El ITER cuenta con el auspicio de la IAEA, así como una forma de compartir los gastos del proyecto.

Diseño

[editar]
Sección del interior de la máquina.

El reactor experimental de fusión nuclear está basado en el diseño soviético, llamado Tokamak. Este es la base de la construcción del modelo de demostración comercial.

El ITER está diseñado para calentar un plasma de hidrógeno gaseoso hasta 100 millones de grados Celsius. El ITER debería generar su primer plasma en diciembre de 2025.6

ITER se basa en el concepto de "tokamak" de confinamiento magnético, en la que se contiene el plasma en una cámara de vacío con forma toroidal. El combustible —una mezcla de deuterio y tritio, dos isótopos del hidrógeno— se calienta a temperaturas superiores a los 150 millones °C, formando un plasma caliente. Los fuertes campos magnéticos se utilizan para mantener el plasma lejos de las paredes, los cuales son producidos por bobinas superconductoras que rodean al contenedor, y por una corriente eléctrica impulsada a través del plasma. El problema reside en la enorme dificultad de comprimir el hidrógeno de un modo uniforme. En las estrellas la gravedad comprime el hidrógeno en una esfera perfecta de modo que el gas se calienta uniforme y limpiamente. En las condiciones del diseño del reactor esta uniformidad es muy difícil de alcanzar.



Primer  Anterior  2 a 3 de 3  Siguiente   Último  
Respuesta  Mensaje 2 de 3 en el tema 
De: BARILOCHENSE6999 Enviado: 14/09/2024 02:31

Historia

[editar]

El 21 de mayo de 2000 se anuncia que físicos estadounidenses han superado uno de los problemas de la fusión nuclear en dispositivos de tipo Tokamak, el fenómeno llamado modos localizados en el borde, o ELMs (por sus siglas en inglés). Los ELM provocarían una erosión de las protecciones interiores de la cámara de vacío del reactor, obligando a su reemplazo frecuente.

En un artículo publicado el domingo 21 de mayo de 2000 en la revista británica Nature Physics, un equipo dirigido por Todd Evans de la empresa General Atomics, California, anuncia que descubrieron que un pequeño campo magnético resonante, proveniente de las bobinas especiales ubicadas en el interior de la vasija del reactor, crea una interferencia magnética “caótica” en el borde del plasma que detiene la formación de flujos.

El 24 de mayo de 2006 los siete socios del proyecto ITER --Unión Europea, Japón, Estados Unidos, Corea del Sur, India, Rusia y China-- firmaron en Bruselas el acuerdo internacional para el lanzamiento del reactor de fusión internacional con el modelo Tokamak, que se construirá en Cadarache, en el Sudeste de Francia usando el diseño Tokamak. Los costes de construcción del reactor se estimaron en 4.570 millones de euros y la duración de la construcción en 10 años. La UE y Francia se comprometieron a contribuir con el 45 % del coste, mientras que las otras seis partes acordaron aportar cada una el 9%.

Durante el Consejo de Gobierno del proyecto ITER que tuvo lugar en noviembre de 2016 se aprobó la nueva planificación global del proyecto, conteniendo como principales hitos el Primer Plasma en 2025 y las primeras operaciones con deuterio y tritio para el 2035.7

Selección de la sede

[editar]

Durante el proceso para definir emplazamiento del centro de investigación y del futuro reactor de fusión se presentaron varios inconvenientes. Durante el mes de noviembre existe una pugna entre Francia y España por la obtención de la candidatura de la UE para situar el ITER. La opción española tras descartar algunas fue Vandellós. En diciembre de 2003 los seis miembros no pudieron decidirse entre situarlo en Francia o en Japón. Al parecer, por motivos políticos los Estados Unidos estuvieron en contra de la candidatura de Francia (se presume que se debió a su negativa a apoyar la invasión de Irak de 2003), lo cual dificultó la decisión definitiva. El 26 de diciembre de 2003, se elige finalmente la candidatura de Cadarache como la opción de la UE.

Mapa de CadaracheFrancia, lugar escogido como sede de ITER.

Se llegó a plantear la posibilidad de que la UE siguiese adelante con el proyecto sin Japón y Estados Unidos. Esto fue sugerido por la Comisión Europea y por Francia, que contaban con que el aporte de estos dos países podría sustituirse con la entrada de nuevos socios y con aumentos de los países de la UE. Se había anunciado que IndiaSuiza y Brasil estarían dispuestos a participar en el proyecto europeo.

Los sitios candidatos fueron:

  • Cadarache (Cerca de Marsella), (contaba con el apoyo de la UE, Rusia y China)
  • Rokkasho (Japón), (contaba con el apoyo de Estados Unidos, Japón y Corea del Sur)
  • Vandellós (Tarragona, España), (Renunció a favor de Cadarache tras la decisión de la UE de presentar una única candidatura)

El 28 de junio de 2005 en Moscú, se llegó finalmente a un acuerdo sobre la localización del reactor, que fue ubicado en Cadarache.

La UE asumirá el 40% de los costes de construcción, Francia costeará un 10% adicional mientras que los cinco socios restantes sufragarán 10% cada uno.

El primer ministro de Francia en ese momento, Dominique de Villepin, consideró que el ITER conllevaría la creación de 4.000 puestos de trabajo en su país.

Diseño técnico

[editar]
Drawing of the ITER tokamak and integrated plant systems
Dibujo del tokamak ITER y los sistemas integrados de la planta.

 

Recipiente de vacío

[editar]
Recipiente de vacío.

El recipiente de vacío es la parte central de la máquina ITER: un recipiente de acero de doble pared en el que el plasma está contenido por medio de campos magnéticos.

El recipiente de vacío ITER será dos veces más grande y 16 veces más pesado que cualquier recipiente de fusión fabricado previamente: cada uno de los nueve sectores con forma de toro pesará entre 390 y 430 toneladas. Cuando se incluyen todas las estructuras de blindaje y puertos, esto suma un total de 5,116 toneladas. Su diámetro externo medirá 19.4 metros (64 pies), el interno 6.5 metros (21 pies). Una vez ensamblada, toda la estructura tendrá 11.3 metros (37 pies) de altura.

La función principal del recipiente de vacío es proporcionar un recipiente de plasma sellado herméticamente. Sus componentes principales son el buque principal, las estructuras portuarias y el sistema de soporte. El recipiente principal es una estructura de doble pared con nervaduras de refuerzo poloidales y toroidales entre conchas de 60 milímetros de grosor (2.4 pulgadas) para reforzar la estructura del recipiente. Estas costillas también forman los pasos de flujo para el agua de enfriamiento. El espacio entre las paredes dobles se llenará con estructuras de protección hechas de acero inoxidable. Las superficies internas del buque actuarán como interfaz con los módulos reproductores que contienen el componente de mantilla reproductora. Estos módulos proporcionarán protección contra los neutrones de alta energía producidos por las reacciones de fusión y algunos también se utilizarán para conceptos de mejoramiento de tritio.

ITER producirá energía al fusionar deuterio y tritio en helio.

El recipiente de vacío tiene 18 puertos superiores, 17 ecuatoriales y 9 puertos inferiores que se utilizarán para operaciones de manipulación remota, sistemas de diagnóstico, inyecciones de haz neutro y bombeo de vacío.

Véase también

[editar]

Respuesta  Mensaje 3 de 3 en el tema 
De: BARILOCHENSE6999 Enviado: 14/09/2024 02:35
ITER ("The Way" in Latin) is one of the most ambitious energy projects in the world today.

In southern France, 35 nations* are collaborating to build the world's largest tokamak, a magnetic fusion device that has been designed to prove the feasibility of fusion as a large-scale and carbon-free source of energy based on the same principle that powers our Sun and stars.

The experimental campaign that will be carried out at ITER is crucial to advancing fusion  science and preparing the way for the fusion power plants of tomorrow.

The primary objective of ITER is the investigation and demonstration of burning plasmas—plasmas in which the energy of the helium nuclei produced by the fusion reactions is enough to maintain the temperature of the plasma, thereby reducing or eliminating the need for external heating. ITER will also test the availability and integration of technologies essential for a fusion reactor (such as superconducting magnets, remote maintenance, and systems to exhaust power from the plasma) and the validity of tritium breeding module concepts that would lead in a future reactor to tritium self-sufficiency.

Thousands of engineers and scientists have contributed to the design of ITER since the idea for an international joint experiment in fusion was first launched in 1985. The ITER Members—China, the European Union, India, Japan, Korea, Russia and the United States—are now engaged in a decades-long collaboration to build and operate the ITER experimental device, and together bring fusion to the point where a demonstration fusion reactor can be designed.

We invite you to explore the ITER website for more information on the science of ITER, the ITER international collaboration and the large-scale building project that is underway in Saint Paul-lez-Durance, southern France.
 
*Update September 2023: The nations participating in ITER include the 27 European Union countries plus China, India, Japan, Korea, the Russian Federation, and the United States. Whereas Switzerland and the United Kingdom (pre-Brexit) had been participating in the ITER Project through Euratom, the status of both nations in relation to Euratom has changed. Switzerland currently has the status of a "non-associated third country" in Euratom while negotiations on an association agreement continue; as such, it is considered by Europe to be a non-participating member in ITER construction. The United Kingdom announced in September 2023 that it will no longer pursue an association agreement with Euratom, but that it will seek to continue and enhance its international partnerships, including with ITER. For the present, the ITER Project is honouring any existing contracts with UK and Swiss citizens and companies, but not concluding new contracts.
 (Click to view larger version...)
The amount of fusion energy a tokamak is capable of producing is a direct result of the number of fusion reactions taking place in its core. Scientists know that the larger the vessel, the larger the volume of the plasma ... and therefore the greater the potential for fusion energy.

With six times the plasma volume of the largest machine operating today, the ITER Tokamak will be a unique experimental tool, capable of longer plasmas and better confinement. The machine has been designed specifically to:

1) Achieve a deuterium-tritium plasma in which the fusion conditions are sustained mostly by internal fusion heating
Fusion research today is at the threshold of exploring a "burning plasma"—one in which the heat from the fusion reaction is confined within the plasma efficiently enough for the self-heating effect to dominate any other form of heating. Scientists are confident that the plasmas in ITER will not only produce much more fusion energy, but will remain stable for longer periods of time.

2) Generate 500 MW of fusion power in its plasma
The world record for fusion power in a magnetic confinement fusion device is held by the European tokamak JET. In 1997, JET produced 16 MW of fusion power from a total input heating power of 24 MW (Q=0.67). ITER is designed to yield in its plasma a ten-fold return on power (Q=10), or 500 MW of fusion power from 50 MW of input heating power. ITER will not convert the heating power it produces as electricity, but—as the first of all fusion experiments in history to produce net energy gain across the plasma—it will prepare the way for the machines that can.

3) Contribute to the demonstration of the integrated operation of technologies for a fusion power plant
ITER will bridge the gap between today's smaller-scale experimental fusion devices and the demonstration fusion power plants of the future. Scientists will be able to study plasmas under conditions similar to those expected in a future power plant and test technologies such as heating, control, diagnostics, cryogenics and remote maintenance.

4) Test tritium breeding
One of the missions for the later stages of ITER operation is to demonstrate the feasibility of producing tritium within the vacuum vessel. The world supply of tritium (used with deuterium to fuel the fusion reaction) is not sufficient to cover the needs of future power plants. ITER will provide a unique opportunity to test mockup in-vessel tritium breeding blankets in a real fusion environment.

5) Demonstrate the safety characteristics of a fusion device
ITER achieved an important landmark in fusion history when, in 2012, the ITER Organization was licensed as a nuclear operator in France based on the rigorous and impartial examination of its safety files. One of the primary goals of ITER operation is to demonstrate the control of the plasma and the fusion reactions with negligible consequences to the environment.

 (Click to view larger version...)
Fusion is the energy source of the Sun and stars. In the tremendous heat and gravity at the core of these stellar bodies, hydrogen nuclei collide, fuse into heavier helium atoms and release tremendous amounts of energy in the process.
 
Twentieth-century fusion  science identified the most efficient fusion reaction in the laboratory setting to be the reaction between two hydrogen isotopes, deuterium (D) and tritium (T), as the DT fusion reaction produces the highest energy gain at the "lowest" temperatures.
 
Three conditions must be fulfilled to achieve fusion in a laboratory: very high temperature (on the order of 150,000,000 °C); sufficient plasma particle density (to increase the likelihood that collisions do occur); and sufficient confinement time (to hold the plasma, which has a propensity to expand, within a defined volume).
 
At extreme temperatures, electrons are separated from nuclei and a gas becomes a plasma—often referred to as the fourth state of matter. Fusion plasmas provide the environment in which light elements can fuse and yield energy.
 
In a tokamak device, powerful magnetic fields are used to confine and control the plasma.
 
See the  Science section for more on fusion and plasmas.
Visualization courtesy of Jamison Daniel, Oak Ridge Leadership Computing Facility (Click to view larger version...)
Visualization courtesy of Jamison Daniel, Oak Ridge Leadership Computing Facility
Power plants today rely either on fossil fuels, nuclear fission, or renewable sources like wind or water. Whatever the energy source, the plants generate electricity by converting mechanical power, such as the rotation of a turbine, into electrical power. In a coal-fired steam station, the combustion of coal turns water into steam and the steam in turn drives turbine generators to produce electricity.

The tokamak is an experimental machine designed to harness the energy of fusion. Inside a tokamak, the energy produced through the fusion of atoms is absorbed as heat in the walls of the vessel. Just like a conventional power plant, a fusion power plant will use this heat to produce steam and then electricity by way of turbines and generators.

The heart of a tokamak is its doughnut-shaped vacuum chamber. Inside, under the influence of extreme heat and pressure, gaseous hydrogen fuel becomes a plasma—the very environment in which hydrogen atoms can be brought to fuse and yield energy. (You can read more on this particular state of matter here.) The charged particles of the plasma can be shaped and controlled by the massive magnetic coils placed around the vessel; physicists use this important property to confine the hot plasma away from the vessel walls. The term "tokamak" comes to us from a Russian acronym that stands for "toroidal chamber with magnetic coils."

First developed by Soviet research in the late 1950s, the tokamak has been adopted around the world as the most promising configuration of magnetic fusion device. ITER will be the world's largest tokamak—twice the size of the largest machine currently in operation, with six times the plasma chamber volume.

See the Machine section for more on the Tokamak and its components.

 (Click to view larger version...)
The ITER Project is a globe-spanning collaboration of 35 nations.

The ITER Members China, the European Union (through Euratom)IndiaJapanKoreaRussia and the United States have combined resources to conquer one of the greatest frontiers in science—reproducing on Earth the boundless energy that fuels the Sun and the stars.

As signatories to the ITER Agreement, concluded in 2006, the seven Members will share the cost of project construction, operation and decommissioning. They also share the experimental results and any intellectual property generated by the fabrication, construction and operation phases.

Europe is responsible for the largest portion of construction costs (45.6 percent); the remainder is shared equally by China, India, Japan, Korea, Russia and the US (9.1 percent each). The Members deliver very little monetary contribution to the project: instead, nine-tenths of contributions will be delivered to the ITER Organization in the form of completed components, systems or buildings.

Taken together, the ITER Members represent three continents, over 40 languages, half of the world's population and 73 percent of global gross domestic product. In the offices of the ITER Organization and those of the seven Domestic Agencies, in laboratories and in industry, literally thousands of people are working toward the success of ITER. A recent review indicated that, with all contracting organizations included, individuals from 90 countries are working on the ITER site.

The ITER Organization has also concluded non-Member technical cooperation agreements with Australia (through the Australian Nuclear  Science and Technology Organisation, ANSTO, in 2016) and Kazakhstan (through Kazakhstan's National Nuclear Centre in 2017); a Memorandum of Understanding with Canada agreeing to explore the possibility of future cooperation and a Cooperation Agreement with the Thailand Institute of Nuclear Technology (2018); as well as nearly 100 Cooperation Agreements with international organizations, national laboratories, universities and schools (see the full list at the end of the latest Annual Report).

See the Members page for links to the seven Domestic Agencies.

 (Click to view larger version...)
On a 42-hectare site in the south of France, building has been underway since 2010. (See the Construction pages of the ITER web.) The central Tokamak Building was handed over to the ITER Organization in March 2020 for the start of machine assembly. The first major event of this new phase was the installation of the 1,250-tonne cryostat base in May 2020
 
The ITER Organization is now overseeing the integration and assembly of components delivered to the ITER site by the seven ITER Members. This includes the assembly of the ITER Tokamak, with its estimated one million components, and the parallel installation and integration of plant systems such as radio frequency heating, fuel cycle, cryogenic, cooling water, vacuum, control, and high voltage electrical.
 
Hundreds of thousands of assembly tasks, organized into construction work packages, have been carefully planned and organized by ITER engineers and schedulers. In its role as overall assembly integrator, the ITER Organization is assisted by several major contractors. (See the Assembly pages of the ITER web.)
 
Update July 2024: At the 34th Meeting of the ITER Council in June 2024, the ITER Organization presented a new baseline proposal to replace the plan that had been used as a reference since 2016. The new baseline prioritizes a robust start to scientific exploitation with a more complete machine than initially planned, with a divertor, blanket shield blocks and other key components and systems in place in time for the first operational phase. That phase—Start of Research Operation—features hydrogen and deuterium-deuterium plasmas that culminate in the operation of the machine in long pulses at full magnetic energy and plasma current. In the new plan, the achievement of full magnetic energy in 2036 represents a delay of three years relative to the 2016 reference, while the start of the deuterium-tritium operation phase in 2039 represents a delay of four years. This proposed baseline will now be further evaluated, including the increased cost and the schedule implications driven by this new approach, before the ITER Council convenes again in November 2024. (See more detail in this article.)
 
ITER Timeline
 
2005                Decision to site the project in France
2006                Signature of the ITER Agreement
2007                Formal creation of the ITER Organization
2007-2009       Land clearing and levelling
2008                Component fabrication begins
2010-2014       Ground support structure and seismic foundations for the Tokamak Complex
2010-2024       Construction of ITER plant and auxiliary buildings (excepting the Hot Cell Facility)
2012                Nuclear licensing milestone: ITER becomes a Basic Nuclear Installation under French law
2015...             Largest components are transported along the ITER Itinerary
2020                Machine assembly begins
2023                Completion of Tokamak Building civil works 
2024                (June) Updated ITER baseline proposal submitted to the ITER Council
https://www.iter.org/proj/inafewlines


 
©2024 - Gabitos - Todos los derechos reservados