Home  |  Contact  

Email:

Password:

Sign Up Now!

Forgot your password?

DESENMASCARANDO LAS FALSAS DOCTRINAS
 
What’s New
  Join Now
  Message Board 
  Image Gallery 
 Files and Documents 
 Polls and Test 
  Member List
 YHWH (DIOS PADRE) EL UNICO DIOS 
 JESUCRISTO NUESTRO MESIAS JUDIO 
 LOS DIEZ MANDAMIENTOS DE LA BIBLIA 
 MEJORE SU CARACTER Y SU VIDA 
 YOU TUBE-MAOR BA OLAM-LINKS 
 YOU TUBE-MAOR BA OLAM-LINKS II 
 BIBLIAS/CONCORDANCIA/LIBROS 
 MAYOR ENEMIGO DEL HOMBRE ES UNO MISMO 
 ¿LA TORA ES MACHISTA? -MENSAJE ESOTERICO Y EXOTERICO 
 ¿ES INMORTAL EL ALMA?- FALACIA DE LA ENCARNACION Y REENCARNACION 
 EL ISLAM TIENE ORIGEN UNITARIO ADOPCIONISTA 
 ANTIGUO TESTAMENTO-ESTUDIO POR VERSICULOS 
 NUEVO TESTAMENTO-ESTUDIOS POR VERSICULOS 
 NUEVO TESTAMENTO II-ESTUDIOS POR VERSICULOS 
 NUEVO TESTAMENTO III-ESTUDIOS POR VERSICULOS 
 CRISTO NO TUVO PREEXISTENCIA 
 ¿QUE ES EL ESPIRITU SANTO? 
 
 
  Tools
 
SEA UN CIENTIFICO CON LA BIBLIA: ERNEST LAWRENCE (HOLY GRAIL) CICLOTRON
Choose another message board
Previous subject  Next subject
Reply  Message 1 of 22 on the subject 
From: BARILOCHENSE6999  (Original message) Sent: 08/08/2024 18:12
Ernest Lawrence
Información personal
Nombre de nacimiento Ernest Orlando Lawrence Ver y modificar los datos en Wikidata
Nacimiento 8 de agosto de 1901 Ver y modificar los datos en Wikidata
Canton (Estados Unidos) Ver y modificar los datos en Wikidata
Fallecimiento 27 de agosto de 1958 Ver y modificar los datos en Wikidata (57 años)
Palo Alto (California, Estados Unidos) Ver y modificar los datos en Wikidata
Sepultura Chapel of Memories Columbarium and Mausoleum Ver y modificar los datos en Wikidata
Residencia Berkeley y Estados Unidos Ver y modificar los datos en Wikidata
Nacionalidad Estadounidense
Familia
Cónyuge Mary K. «Molly» (Blumer) Lawrence
Educación
Educado en
Supervisor doctoral William Francis Gray Swann Ver y modificar los datos en Wikidata
Información profesional
Ocupación Físico, físico nuclear y profesor universitario Ver y modificar los datos en Wikidata
Área Física Ver y modificar los datos en Wikidata
Conocido por invención del ciclotrón
Empleador Universidad de California en Berkeley Ver y modificar los datos en Wikidata
Estudiantes doctorales Edwin Mattison McMillan
Chien-Shiung Wu
Milton Stanley Livingston
Kenneth Ross Mackenzie
John Reginald Richardson
Miembro de
Firma


First  Previous  2 to 7 of 22  Next   Last 
Reply  Message 2 of 22 on the subject 
From: BARILOCHENSE6999 Sent: 08/08/2024 18:14

Desarrollo del ciclotrón

[editar]

Invención

[editar]

Su invento empezó como un boceto en un trozo de una servilleta de papel. En 1929, mientras estaba en la biblioteca, echó un vistazo a un artículo de revista escrito por el físico noruego Rolf Widerøe,32​ y se sintió intrigado por uno de los diagramas.3334​ En este se representaba un dispositivo con una serie de electrodos de distinta longitud y que producía partículas de alta energía por medio de una sucesión de pequeñas «pulsaciones».35​ En esos años, los físicos comenzaban a explorar el núcleo atómico. En 1919, el físico neozelandés Ernest Rutherford había bombardeado átomos de nitrógeno con partículas alfa y logrado extraer protones de algunos de sus núcleos.36​ No sabían que los núcleos tienen una carga positiva que repele otros núcleos con la misma carga eléctrica y están unidos firmemente por una fuerza que apenas empezaban a entender. Para separarlos o desintegrarlos, se requeriría de energías más altas, del orden de millones de voltios.37

Diagrama del ciclotrón en la patente de 1934.

Comprendió que un acelerador de partículas sería demasiado grande y difícil de manipular para su laboratorio universitario. Buscando una manera de construir uno más compacto, decidió crear una cámara de aceleración circular entre los polos de un electroimán. El campo magnético mantendría los protones cargados en una trayectoria en espiral a medida que aceleran entre dos electrodos semicirculares conectados a un potencial alterno. Después de aproximadamente un centenar de vueltas, los protones podrían impactar en un objetivo, como un haz de partículas de alta energía. Según Heilbron y Seidel, Lawrence dijo entusiasmado a sus colegas que había descubierto un método para obtener partículas de alta energía, sin necesidad de usar un voltaje más alto.38​ Inicialmente lo trabajó con Niels Edlefsen, un estudiante de doctorado.3940​ Su primer ciclotrón estaba hecho de latón, alambre y cera de lacre,41​ y con solo 10 cm (4 in) de diámetro, literalmente, podía sujetarse con una mano y con un costo total de 25 $.2342

Las personas que empleó para desarrollar el proyecto eran estudiantes graduados. Edlefsen asumió una cátedra auxiliar en septiembre de 193043​ y fue sustituido por David H. Sloan y M. Stanley Livingston, quienes trabajaron el desarrollo del acelerador concebido por Widerøe44​ y en el ciclotrón de Edlefsen, respectivamente.26​ Ambos tenían sus propias fuentes de apoyo económico45​ y sus diseños resultaron prácticos. En mayo de 1931, el acelerador lineal de Sloan fue capaz de estimular los iones con 1 MeV.46​ Livingston enfrentó un mayor desafío técnico, pero el 2 de enero de 1931, cuando aplicó 1800 V a su ciclotrón de 11 in, logró obtener protones con 80 000 eV en giros continuos. Una semana más tarde, tenía 1.22 MeV a partir de 3000 V. Con estos resultados pudo terminar su tesis doctoral.47

Desarrollo

[editar]
M. Stanley Livingston (a la izquierda) y Lawrence cerca del ciclotrón de 27 in en el Laboratorio de Radiación (1934).

En lo que se convertiría en una costumbre recurrente, cada vez que tenía una primera señal de éxito iniciaba la planificación de otra máquina mucho más grande. Junto a Livingston, elaboró el diseño para un ciclotrón de 69 cm (27 in) a principios de 1932. El imán del ciclotrón de 11 in pesaba aproximadamente dos toneladas y costaba 800 $, pero Lawrence encontró un enorme imán oxidado de 80 T en un depósito de chatarra en Palo Alto para el ciclotrón de 27 in —originalmente, ese magneto había sido construido durante la Primera Guerra Mundial para alimentar una conexión de radio transatlántica—.4849​ El ciclotrón era un poderoso instrumento científico, pero esto no se tradujo en un descubrimiento científico significativo. En abril de 1932, los físicos John Douglas Cockcroft y Ernest Walton, de los Laboratorios Cavendish en Inglaterra, anunciaron que habían bombardeado átomos de litio con protones y lograron transmutarlo en helio.50​ La energía requerida resultó ser bastante baja, incluso dentro de la capacidad del ciclotrón de 11 in. Al enterarse de ello, Lawrence envió un telegrama a Berkeley y solicitó los resultados de Cockcroft y Walton para poder verificarlos.51​ El equipo demoró cinco meses en concluir, debido principalmente a la falta de aparatos detectores adecuados.52

Reunión en Berkeley (1940) sobre el diseño del ciclotrón de 184 in (4.67 m). De izquierda a derecha: Lawrence, Arthur ComptonVannevar BushJames B. ConantKarl T. Compton y Alfred Lee Loomis.

Si bien los descubrimientos importantes continuaron eludiendo al Laboratorio de Radiación —debido principalmente a que se centró en el desarrollo del ciclotrón en lugar de su uso científico por sus máquinas cada vez más grandes—, Lawrence pudo conseguir los aparatos que se necesitaba para los experimentos en física de altas energías. Alrededor de este dispositivo, construyó lo que se convertiría en el laboratorio más importante del mundo para el nuevo campo de la investigación de la física nuclear en la década de 1930. Recibió una patente para el ciclotrón en 1934,53​ la cual cedió a Research Corporation,54​ una fundación privada que financió gran parte de sus primeros trabajos.20​ En 1935, McMillan, Lawrence y Robert Thornton llevaron a cabo experimentos con haces de deuterones en el ciclotrón. Esto produjo una serie de resultados inesperados: los deuterones se fusionan con núcleos diana y los transmutan a isótopos más pesados con la expulsión un protón. Sus experimentos demostraron una interacción nuclear a energías más bajas en la barrera de Coulomb entre deuterones y núcleos diana de lo que se había calculado teóricamente. Oppenheimer y Melba Phillips, su estudiante de doctorado, concibieron el proceso Oppenheimer-Phillips para explicar este fenómeno.55

En febrero de 1936, el presidente de la Universidad de HarvardJames Bryant Conant, hizo ofertas atractivas a Lawrence y Oppenheimer.5657​ Robert Gordon Sproul, de la Universidad de California, respondió con una mejora de las condiciones económicas. El Laboratorio de Radiación se convirtió oficialmente en un departamento de la Universidad de California el 1 de julio de 1936. Lawrence fue nombrado formalmente como su director, se le asignó un asistente a tiempo completo y la Universidad acordó destinar 20 000 $ anuales para sus actividades de investigación.58


Reply  Message 3 of 22 on the subject 
From: BARILOCHENSE6999 Sent: 08/08/2024 18:17

Percepción pública

[editar]
Participantes del 7.º Congreso Solvay (1933) sobre la «estructura del núcleo atómico». Además de Lawrence, estuvieron presentes Erwin SchrödingerNiels BohrMarie CurieLise MeitnerOwen Willans RichardsonEnrico FermiAuguste Piccard, entre otros.
El ciclotrón de 60 in (1.52 m) poco después de su terminación en 1939. Las figuras clave en su desarrollo y uso están de izquierda a derecha, de pie: D. Cooksey, D. Corson, Lawrence, R. Thornton, J. Backus, WS Sainsbury. Al fondo están Luis Walter Álvarez y Edwin Mattison McMillan.

Usando el nuevo ciclotrón de 27 in, el equipo de Berkeley observó que todos los elementos bombardeados por el deuterio —recientemente descubierto— emitían energía y a una misma escala.59​ Esto llevó a postular la existencia de una nueva y, hasta ese momento, desconocida partícula que pudiera ser empleada como fuente de energía ilimitada.60​ William Leonard Laurence, de The New York Times,61​ describió a Lawrence como «un nuevo obrador de milagros de la ciencia».62​ Por invitación de Cockroft, Lawrence asistió al séptimo Congreso Solvay (1933) en Bélgica,63​ que reunió a los físicos más importantes de la época. Casi todos eran europeos, pero de vez en cuando era invitado a asistir un destacado científico estadounidense, como Robert Andrews Millikan o Arthur Compton. Los participantes solicitaron una presentación sobre el ciclotrón.64​ Las presentación de Lawrence sobre la energía ilimitada tuvo una percepción muy diferente en Solvay que en los Estados Unidos, pues se encontró con el escepticismo fulminante de James Chadwick, el físico de los Laboratorios Cavendish que había descubierto el neutrón en 1932 y por el que sería galardonado con el Premio Nobel en 1935.65a​ Para él, lo que Lawrence estaba haciendo no era «gran ciencia», sino «mala ciencia» (Bad Science). Además, advirtió que lo que el equipo de Lawrence estaba observando era la contaminación de los equipos electrónicos.76

Cuando regresó a Berkeley, coordinó a su equipo para efectuar una revisión minuciosa de los resultados y reunir suficientes evidencias como para convencer a Chadwick.59​ Mientras tanto, en los Laboratorios Cavendish, Rutherford y Mark Oliphant77​ descubrieron que el deuterio se fusiona para formar 3He,78​ lo que provoca el efecto que los científicos del ciclotrón habían observado.b​ No solo Chadwick había acertado en su hipótesis sobre una posible contaminación, sino también el equipo había pasado por alto otro descubrimiento importante, el de la fusión nuclear.81c​ La respuesta de Lawrence fue seguir adelante con la creación de ciclotrones mucho más grandes. El ciclotrón de 27 in fue reemplazado por un ciclotrón de 37 in en junio de 1937,8586​ que a su vez fue reemplazado por otro de 60 in en mayo de 1939.87​ Este último fue utilizado para bombardear átomos de hierro y produjo sus primeros isótopos radiactivos en junio.88​ Trabajando junto a su hermano John e Israel Lyon Chaikoff —del Departamento de Fisiología de la Universidad de California—, apoyó la investigación sobre el uso de isótopos radiactivos con fines terapéuticos.89​ El 32P fue producido con facilidad en el ciclotrón90​ y John lo utilizó para curar a una mujer que padecía de policitemia vera, una enfermedad de la sangre. También usó el 32P producido en el ciclotrón de 37 in para pruebas en ratones con leucemia en 1938. Encontró que el fósforo radiactivo se concentra en las células cancerosas de rápido crecimiento. Esto llevó a ensayos clínicos posteriores en pacientes humanos. En 1948, una evaluación de la terapia reveló que las remisiones se producían bajo ciertas circunstancias.91​ Su hermano Ernest también esperaba el posible uso médico de los neutrones. El primer paciente de cáncer recibió terapia de neutrones a partir del ciclotrón de 60 in el 20 de noviembre de 1948.88​ Chaikoff realizó ensayos para el uso de isótopos radiactivos como marcadores radiactivos en estudios de los mecanismos de las reacciones bioquímicas.92

Fue galardonado en 1937 con la medalla Hughes de la Real Sociedad de Londres «por su trabajo en el desarrollo del ciclotrón y sus aplicaciones a las investigaciones de la desintegración nuclear»93​ y en noviembre de 1939, le concedieron el Premio Nobel de Física «por la creación y el desarrollo del ciclotrón, y por los resultados obtenidos de ello, especialmente, en relación con elementos radiactivos artificiales».94​ Fue el primero que representó a la Universidad de California en Berkeley,95​ así como el primer ciudadano de Dakota del Sur en ganar un premio Nobel, y el primero que recibió apoyo de una universidad pública estatal (a diferencia de instituciones privadas como Harvard o Yale). La ceremonia de entrega del premio se llevó a cabo el 29 de febrero de 1940, en Berkeley, debido a estallido de la Segunda Guerra Mundial, en el auditorio Wheeler Hall del campus de la universidad. Lawrence recibió su medalla de Carl E. Wallerstedt, cónsul general de Suecia en San Francisco.95​ El físico Robert Williams Wood le señaló proféticamente en una carta: «Como usted ha sentado las bases para la cataclísmica explosión de uranio... Estoy seguro que le aprobarían un viejo Nobel».96​ En marzo de 1940, Arthur ComptonVannevar BushJames Bryant ConantKarl Taylor Compton y Alfred Lee Loomis viajaron a Berkeley para presentar una propuesta a Lawrence sobre un ciclotrón 184 in y con un imán 4500 T, que se estimó que costaría 2.65 millones de dólares. La Fundación Rockefeller aportó 1.15 millones de dólares para el inicio del proyecto.9798

Diagrama de funcionamiento del ciclotrón. Las piezas en los polos del imán son más pequeñas de lo que realmente son, pues deberían ser más anchas —como las des (las dos piezas de metal aisladas entre sí)— para crear un campo uniforme.

Reply  Message 4 of 22 on the subject 
From: BARILOCHENSE6999 Sent: 09/08/2024 00:34
Ernest Lawrence: Mastering the Atom | Scientist Biography

Reply  Message 5 of 22 on the subject 
From: BARILOCHENSE6999 Sent: 09/08/2024 00:36
MH20 | LA-Ernest Lawrence, Enrico Fermi and Isidor Rabi 1945… | Flickr

Reply  Message 6 of 22 on the subject 
From: BARILOCHENSE6999 Sent: 09/08/2024 00:38
Libro Brotherhood of the Bomb: The Tangled Lives and Loyalties of Robert  Oppenheimer, Ernest Lawrence, and De Herken, Gregg - Buscalibre

Reply  Message 7 of 22 on the subject 
From: BARILOCHENSE6999 Sent: 09/08/2024 00:41

Ernest Lawrence

Ernest Lawrence

Lived 1901 – 1958.

Ernest Lawrence invented the cyclotron, for which he was awarded the 1939 Nobel Prize in Physics. Cyclotrons in his laboratories were used to discover a large number of new chemical elements and isotopes – millions of lives have been saved using these radioisotopes. Lawrence’s work initiated the age of “big science.”

 

Beginnings

Ernest Orlando Lawrence was born on August 8, 1901 into a middle-class family in the small prairie-town of Canton, South Dakota, USA. His father was Carl Gustavus Lawrence, a superintendent of schools and history teacher. His mother was Gunda Regina Jacobson, a mathematics teacher. Both were of Norwegian ancestry.

Ernest attended elementary and high school in Canton, except for four years spent in South Dakota’s capital, Pierre. The family moved to Pierre because his father’s job took them there when Ernest was aged 9 – 13. Ernest was tall and thin, and he picked up the nickname ‘skinny,’ which he didn’t mind.

Ernest became a seriously knowledgeable radio-ham. He built a shortwave transmitter and shared his enthusiasm for wireless communications with two rather remarkable friends. One was his junior brother John, who became one of the founders of nuclear medicine; the other was Merle Tuve, whose forebears were also Norwegian, and who became a very eminent physicist.

Ernest’s parents were rather devout members of the Lutheran Church. His mother was vehemently opposed to her son to going to the state university, fearing he might be led astray there! He enrolled in medicine at the University of South Dakota in Vermillion in 1919 without his mother’s knowledge. Although a medical student, his passion for building radio transmitters did not slacken. He approached Lewis Akeley, the Dean of Engineering, about setting up a campus radio station.

Akeley, who had once been a professor of chemistry and physics, was so impressed by the young radio enthusiast’s expertise in electronics that he persuaded him to forget about premedical studies and switch to physical sciences instead. So Ernest majored in physical science. And he also started South Dakota’s first ever radio station!

Luis Alvarez“On the wall of Lawrence’s office, Dean Akeley’s picture always had the place of honor in a gallery that included photographs of Lawrence’s scientific heroes: Arthur Compton, Niels Bohr, and Ernest Rutherford.”

 

LUIS ALVAREZ
Nobel Prize in Physics Winner 1968
 

Ernest Lawrence graduated at age 21 with a Bachelor’s Degree, then joined his childhood friend Merle Tuve at the University of Minnesota, where he completed a Master’s Degree in Physics in two years. In 1925 he obtained his Ph.D. in Physics from Yale University.

Ernest Lawrence’s Contributions to Science

The Cyclotron

Alpha-particle bombardments
By 1929 Lawrence had been an associate professor of physics at the University of California at Berkeley for a year.

Until then, physicists used radioactive elements as a source of high energy particles. Alpha-particles, escaping at high speeds from radioactive nuclei, offered scientists like Ernest Rutherford a way to bombard chemical elements with high energy atom-sized particles. This had led to a number of groundbreaking discoveries, including the discoveries of the proton and the atomic nucleus.

Particle Accelerators
In 1929 Lawrence picked up a copy of a science journal to read during a particularly tedious meeting he had to attend. The journal included a paper by Rolf Widerøe, one of the pioneers of a new concept in physics – particle accelerators, or atom-smashers.

Particle accelerators promised scientists a way of using electricity to produce atom-sized particles moving at high speeds. Unlike radioactive sources of particles, the amount of energy carried by particles from accelerators could be fine-tuned to produce specific results.

This was an especially exciting field, because it seemed certain that momentous new discoveries would emerge from the use of accelerators.

Accelerated particles could be crashed into target atoms, producing debris from which information about the tiny, unseen world of the atomic nucleus could be obtained. Also, it was possible that new types of atoms and chemical elements could be produced.

Rolf Widerøe had envisioned a device in which high voltages would be used to accelerate particles in a straight line.

Miniaturizing an Accelerator
Lawrence thought that, if it were to produce very high energy particles, Widerøe’s device would be too long to fit in a typical laboratory.

And he instantly had his big idea: instead of accelerating particles in a straight line, he would use electromagnets to accelerate them in a spiral path, gathering ever more speed and energy until they smashed into their target. His device would be smaller and cheaper than Widerøe’s.

Cyclotron Patent

Diagram from Lawrence’s cyclotron patent. Charged particles are injected into the center of the cylinder and are accelerated by a high frequency alternating voltage. Magnets above and below the cylinder create the magnetic field that causes the particles to follow a spiral path. While moving in a spiral, the particles repeatedly encounter the accelerating voltage from the electrodes and so are repeatedly accelerated. The elegant result is that the amount of energy given to the particles is many times greater than they would get from following a straight line path with a single applied voltage. Particles spiral outward at ever greater speeds until they crash into a target.

The first cyclotron Lawrence built was only 4 inches (10 cm) across and cost $25. And it worked! It accelerated ions of hydrogen molecules to an energy of 80,000 electron volts.

It is ironic that Lawrence’s big idea was for low-cost miniaturization of an accelerator. Soon enough, he would be the pacesetter in high-cost “big science.”

Ever Bigger
Lawrence saw the great potential of his device, and others did too – he now got funding to develop both linear accelerators and cyclotrons. He was thrilled with how things had turned out. His work allowed him to revisit those idyllic, happy, childhood days of building wireless transmitters with sympathetic friends. Except now he could indulge his passion for electronic equipment on an epic scale.

And the icing on the cake was that at 29 years old, he was promoted to become the University of California’s youngest full professor.

By mid-1931 he had an 11-inch cyclotron operating using a 2 ton magnet and was planning a 27-inch cyclotron using an 80 ton magnet!

Lawrence’s cyclotron patent was granted in 1934. Although he’d patented the device, he encouraged other research laboratories to build cyclotrons, gave them assistance when they got stuck, and never charged any royalties for his invention. He was also generous with new radioactive materials produced in his laboratory, giving samples to other laboratories to help them out.

Albert Einstein, however, had reservations about the usefulness of research using particle accelerators, declaring:

Albert Einstein“You see, it is like shooting birds in the dark in a country where there are only a few birds.”

 

ALBERT EINSTEIN
Interview at AAAS meeting, 1934
 

Since atoms are mainly empty space, Einstein was correct in his analogy. What he overlooked is the fact that accelerators would soon reach a point where they had a very rapid rate of fire and a virtually unlimited supply of bullets!

 
60-inch cyclotron

The 60-inch cyclotron, completed in 1939, at the Lawrence Radiation Laboratory, Berkeley. This device features two magnets weighing a total of almost 200 tons. Glenn Seaborg and his coworkers used this particle accelerator to discover five new chemical elements: plutonium, curium, americium, berkelium, and californium.

Lawrence provided scientists with the finest ever tool for discovering the secrets of the atom. Scientists like Glenn Seaborg and Albert Ghiorso would use Berkeley’s cyclotrons to greatly expand the number of elements in the periodic table.

Glenn Seaborg“His cyclotron is to nuclear science what Galileo’s telescope was to astronomy … his buoyant optimism spread to everyone around him and accounted for the attainment of many an ‘impossible’ objective.”

 

GLENN SEABORG
Nobel Prize in Chemistry Winner 1951
 

Missing out on Discoveries
In the early 1930s Lawrence and his growing team, although making great efforts to make new discoveries using their cyclotrons, were not very successful.

  • They could have discovered transmutation of lithium to helium by proton bombardment, but didn’t. This ‘splitting of the atom’ was discovered in 1932 by John Cockcroft and Ernest Walton, at the University of Cambridge in the UK, for which the pair received the 1951 Nobel Prize in physics.
  • They could have discovered nuclear fusion, but didn’t. This was discovered in 1934 by Ernest Rutherford and Mark Oliphant, also at the University of Cambridge in the UK. Oliphant used a particle accelerator to fire deuterium ions at substances such as ammonium chloride and found he had produced helium-3 and tritium. (In fact, Lawrence’s team in Berkeley had carried out a similar experiment but had – to Lawrence’s ultimate considerable embarrassment – misinterpreted the results, wrongly believing they had discovered that deuterons disintegrate.)
  • They could have discovered how to synthesize artificial radioactive elements by alpha-particle bombardment, but didn’t. This was discovered in 1934 by the Joliot-Curies at the Curie Institute in Paris, France, for which they received the 1935 Nobel Prize in Chemistry. Lawrence was particularly dismayed when he heard about this, because he realized it was something his own laboratory could have achieved easily.
Ernest Lawrence“We have had these radioactive substances in our midst for more than half a year. We have been kicking ourselves that we haven’t had the sense to notice that the radiations given off do not stop immediately after turning off the bombarding beam.”

 

ERNEST LAWRENCE
February 1934
 

Although it was maddening to have missed out on some incredibly exciting discoveries, Lawrence was not fazed. His greatest ambition was to build ever more powerful accelerators, because he felt that ultimately these accelerators would yield secrets of nature not available at lower energies.

Ernest Lawrence“I have gotten over feeling badly. We would be eternally miserable if our errors worried us too much because as we push forward we will make plenty more.”

 

ERNEST LAWRENCE
February 1934
 

And discoveries did begin to flow using Lawrence’s cyclotrons. In 1939 Luis Alvarez and Robert Cornog used the 60-inch cyclotron to study helium-3. Theoreticians had said helium-3 would be radioactive. Actually, it proved to be stable. And then Alvarez and Cornog used the 37-inch cyclotron to produce tritium, which theoreticians said would be stable, but was actually radioactive. In the same year, Edwin McMillan and Philip Abelson used the 60-inch cyclotron to produce and so discover the new element neptunium. Many more discoveries would follow.

Cancer Treatments

Lawrence’s cyclotrons were soon making a difference to people’s lives. In 1921 the American people had raised $100,000 for Marie Curie to purchase a mere 1 gram of radium for research and cancer treatments. Radioactive elements for cancer treatments were shockingly expensive.

With his cyclotron, Lawrence realized he could fine-tune the production of radioactive isotopes.

In 1934 he realized that sodium-24 could be an ideal, non-toxic source of gamma rays for cancer radiotherapy. He used one of his cyclotrons to convert normal rock salt into sodium-24 by deuteron bombardment. Soon, for about $2 worth of salt and power, he had made the medical equivalent of radium that had cost $100,000 in 1921!

Lawrence continued his efforts to make radioisotopes for cancer therapy. While carrying out this work researchers in his laboratory discovered carbon-14, oxygen-15, fluorine-18, and thallium-201.

Technetium-99m, now used worldwide in tens of millions of medical procedures every year, was also discovered in his laboratory. Technetium-99m’s use has saved millions of lives.

Keeping it in the Family
In 1936 Lawrence invited his brother John, from Yale University’s medical faculty, to Berkeley to cooperate in trials using the cyclotron and its products in medical treatments. The result was huge success, to the extent that John Lawrence is now known as the father of nuclear medicine.

In 1937 Lawrence’s mother was diagnosed with inoperable cancer and given just a few months to live. Ernest and John decided to attack her tumor using an incredibly powerful x-ray machine that Ernest and his team had built and installed at the University of California’s medical school. The result was that his mother was completely cured. She actually went on to outlive Ernest.

Cyclotrons and Cancer Today
In addition to producing radioisotopes for cancer treatments, cyclotrons are still in use today producing proton beams, which yield neutron beams, which are used to attack cancers directly.

The Nobel Prize

Ernest Lawrence was awarded the Nobel Prize in Physics in 1939 for his invention of the cyclotron and the discoveries made with it. He and his team conquered a huge number of colossal engineering problems to achieve their results.

Luis Alvarez“The important ingredients of his success were native ingenuity and basic good judgment in science, great stamina, an enthusiastic and outgoing personality, and a sense of integrity that was overwhelming.”

 

LUIS ALVAREZ
Nobel Prize in Physics Winner 1968
 

Ever Bigger Science and the Bomb

By 1940 Lawrence was planning a 184-inch cyclotron, which needed 4500 tons of magnets. The Rockefeller Foundation put up over a million dollars to get the project started. Lawrence’s research was growing fast in scale and ambition. It had become big science.

It is a testament to Lawrence’s energy and persuasive skills that he was able find funding. He was helped by the fact that governments around the world were becoming increasingly interested in releasing the enormous amount of energy scientists had realized was present in the atomic nucleus.

184-inch cyclotron during construction

Lawrence’s 184-inch cyclotron during construction. The era of big science had begun.

With the world’s most advanced accelerators and the discovery in 1940 of plutonium using the Berkeley 60-inch cyclotron, Lawrence was destined to play a leading role in the Manhattan Project – the project that built the world’s first nuclear weapon and would push science to ever greater scales of operation.

Lawrence developed a new device, the calutron, to separate isotopes of uranium. The calutron was a hybrid of the cyclotron and a mass spectrometer. Calutrons were employed to produce the uranium-235 that was used in the Little Boy atomic bomb dropped on Hiroshima in August 1945.

Lawrence's Calutron

Lawrence’s calutron invention was used to separate isotopes of uranium.

Ernest Lawrence“The atomic bombs will surely shorten the war, and let us hope that they will effectively end war as a possibility in human affairs.”

 

ERNEST LAWRENCE
Speaking in early 1945
 

The largest cyclotron Lawrence built for research purposes was the 184-inch (4.67 meter) cyclotron completed in 1942. Protons could be accelerated to energies in excess of 100 MeV.

Today, the age of big science that began with Lawrence marches onward. Ever bigger, ever more expensive, ever more powerful devices continue to reveal the extent and depth of the subatomic world.

In 2015, CERN’s Large Hadron Collider operated in a circular tunnel almost 17 miles (27,000 meters) long underneath Switzerland. Particle energies reached 6.5 TeV – about 65,000 times more powerful than Lawrence’s 1942 device.

Some Personal Details and the End

Lawrence married Mary Kimberly Blumer in May 1932. The daughter of the Dean of Yale’s Medical School, she was always known as Molly. Molly had a Bachelor’s Degree in Bacteriology and met her future husband on a blind date. The couple had six children.

Ernest Lawrence died at the age of 57 on August 27, 1958 in a hospital in Palo Alto, California following surgery for intestinal problems.

Less than a month after his death, the University of California renamed two of the university’s nuclear research laboratories in his honor: the Lawrence Livermore National Laboratory and the Lawrence Berkeley National Laboratory. Today both continue as world-leading research centers.

Three years after his death, element 103 was discovered, produced for the first time in a particle accelerator at the Lawrence Berkeley National Laboratory. The element was named lawrencium in honor of the man who had made its discovery possible.

Advertisements

Author of this page: The Doc
Images digitally enhanced and colorized by this website. © All rights reserved.

Cite this Page

Please use the following MLA compliant citation:

"Ernest Lawrence." Famous Scientists. famousscientists.org. 24 Oct. 2015. Web. 8/8/2024 
.

Published by FamousScientists.org

Further Reading
Glenn Seaborg
E. O. Lawrence – Physicist, Engineer, Statesman of Science.
Science, 128 (3332), p1123-1124, Nov 7 1958

Luis W. Alvarez
Ernest Orlando Lawrence – A Biographical Memoir
National Academy of Sciences, Washington D.C., 1970

J. L. Heilbron, Robert W. Seidel
Lawrence and His Laboratory: A History of the Lawrence Berkeley Laboratory, Volume 1
University of California Press, 1989

Jeffrey E. Williams
Donner Laboratory: The Birthplace of Nuclear Medicine
Nucl Med., 40:16N-20N, 1999

Science and Technology Review
Lawrence Livermore National Laboratory, 2001

Paul Halpern
Collider: The Search for the World’s Smallest Particles
John Wiley & Sons, 2009

Michael Hiltzik
Big Science: Ernest Lawrence and the Invention that Launched the Military-Industrial Complex
Simon and Schuster, 2015



First  Previous  2 a 7 de 22  Next   Last 
Previous subject  Next subject
 
©2024 - Gabitos - All rights reserved