En el camino que conduce a Vézelay, la Cruz Montjoie simboliza la alegría del peregrino que ve, por primera vez, la basílica de Santa María Magdalena, siendo el punto desde el que por vez primera se divisa Santa Magdalena de Vézelay.
Construida en 1037 por Geoffroy, abad de Vézelay, que la dedicó al culto de María Magdalena, la villa se convirtió, rápidamente, en un lugar de peregrinación. La reputación de la abadía da paso a la prosperidad del pueblo contribuyendo a su desarrollo. Peregrinos como el duque de Borgoña, Hugo II y su corte, en 1084; o Bernardo de Claraval (San Bernardo) que acudió, en 1146, a predicar la segunda cruzada; también Felipe Augusto y Ricardo Corazón de León visitaron la abadía en 1191 antes de partir para la tercera cruzada; o Luis IX de Francia, en 1248, convirtieron a Vézelay en una villa que atrajo a innumerables peregrinos. En el año 1096, el abad Artaud dio comienzo a una ampliación de la abadía. Se construyeron un crucero y un coro. Las obras duraron hasta el año 1104 y sólo se conserva la nave.
En julio de 1120, la víspera de santa la estructura de la abadía se incendió y se derrumbó (causando la muerte de 1127 personas). Se construyó una nueva nave, la obra se acabó en 1138. En 1185 se empezó la construcción de un nuevo coro y un crucero de estilo gótico. En 1217 se instalaron en la abadía los franciscanos. Empezó el declive de la misma al encontrarse en Saint-Maximin-la-Sainte-Baume nuevas reliquias de santa María Magdalena. En el año 1537 la abadía se secularizó y los monjes fueron sustituidos por canónigos. En el año 1790 la abadía de María Magdalena pasó a ser una simple iglesia parroquial y, posteriormente (1796), se vendió como un bien nacional.
En 1840 se encargó la restauración del edificio original, a fin de salvarlo de la ruina, a Eugène Viollet-le-Duc, tras la inspección llevada a cabo por Prosper Mérimée. La abadía había sufrido graves daños durante las actividades de saqueo llevado a cabo por los hugonotes en 1569; las esculturas del tímpano habían sido golpeadas (1793) y, en 1819, un rayo había caído sobre la torre de San Miguel destruyéndola. La restauración concluyó en 1876, se reintegraron las reliquias de Santa María Magdalena y se restableció la peregrinación que sería paralizada, nuevamente, en 1919.
En 1920 se le otorgó, a la abadía, el rango de basílica y el peregrinaje volvió a recomenzar. Finalmente, en 1979, la basílica y la colina de Vézelay fueron declaradas Patrimonio de la Humanidad por la Unesco. Fue elegida por el chelista Mstislav Rostropóvich para la grabación en video de su interpretación de las seis suites de Johann Sebastian Bach para violonchelo solo en 1991.
The church of Santa Mariá Magdalena was one of the first of 12 churches Fernando III built after conquering Córdoba in 1236. Located in the prosperous neighbourhood of La Magdelena east of the city centre, it served as a model for later churches. It combines the Romanesque, Gothic and Mudejar styles of architecture. The main entrance is at the west end of the church below a rose window. The side door on the south side, the oldest in Córdoba, presents an alfiz with decorations of pointed diamonds. The 17th-century tower consists of sections which become narrower towards the top.[2]
While there is little documentary evidence of the history of the church, it is known that its construction was well advanced by the end of the 13th century. Over the years, the building has undergone several transformations. The sacristy is an addition from the early 16th century while plastered ceiling vaults were added in the 18th century, covering the medieval woodwork until they were recently removed.[3]
In 1990, the church was seriously damaged by fire. Thereafter it was no longer used as a church and was deconsecrated. Now owned by the Cajasur bank, it is a venue for concerts and other cultural events.[3]
Santa Maria Magdalena (St Mary Magdalene Church) is church in Cordoba, Andalusia, Spain, built Fernando III in Mudejar style . It forms part of Historic centre of Cordoba, UNESCO World
Es el monumento más emblemático de Córdoba. Un lugar cargado de historia y belleza. Declarada Patrimonio de la Humanidad en 1984, su condición de Mezquita-Catedral la hacen única en el mundo. A pesar de la austeridad que, hoy en día, nos muestra por fuera, en su interior una explosión de arte la convierten en uno de los lugares más bellos de nuestro país.
Mezquita-Catedral de Córdoba.
La Catedral de la Asunción de Nuestra Señora, es el nombre eclesiástico de la Catedral de Córdoba, o antigua Mezquita de Córdoba. Se comenzó a construir en el 786 en el lugar que ocupaba la basílica visigótica de San Vicente Mártir.
Mezquita-Catedral de Córdoba.
La mezquita fue objeto de ampliaciones durante el Emirato de Córdoba y el Califato de Córdoba. En 1238, tras la Reconquista, se llevó a cabo la reconversión de la mezquita en una catedral católica con la ordenación episcopal de su primer obispo. En 1523 se empezó la construcción de una basílicarenacentista de estilo plateresco en el centro del edificio musulmán.
Mezquita-Catedral de Córdoba.
La demolición de parte de la Mezquita para construir la catedral siempre fue motivo de controversia, el propio Carlos V, la primera vez que la visito, durante la construcción de la catedral, dijo: "Si llego a saber lo que estáis haciendo aquí, jamas habría autorizado esta construcción. Catedrales en España tenemos muchas, pero Mezquitas como esta, ninguna." Sin embargo, es algo que no tiene vuelta atrás y gracias a lo cual, la Mezquita-Catedral es única en el mundo entero.
In the lead-up to the launch of the James Webb telescope, we look at the scientific objectives of the most powerful space observatory ever sent into orbit.
Are we alone in the universe? What did the first galaxies formed after the Big Bang look like? How did the planets in our solar system emerge? The James Webb telescope hopes to find answers to these existential questions.
Set to launch on December 22, the James Webb is the product of the combined scientific prowess of NASA, the European Space Agency (ESA) and the Canadian Space Agency (CSA) – and by extension, Université de Montréal (UdeM). The CSA contributed a scientific instrument and a guidance sensor to the massive observatory and René Doyon, Director of UdeM’s Institute for Research on Exoplanets (iREx) and a professor in the Physics Department, is the principal investigator on the Canadian scientific team.
Together, the components supplied by the CSA, NASA and the ESA form the most complex, accurate and powerful space observatory ever built, one that promises revolutionary discoveries in astronomy.
The unparalleled power of the observatory will help scientists throughout the world scrutinize the distant reaches of the universe to learn more about the composition and inhabitability of exoplanets and study the life cycle of stars.
Exploring new worlds in search of life
The James Webb Telescope is the successor to the Hubble space telescope but is more precise and efficient because of the size of its mirror, the range of light it can detect and its location.
These attributes will enable the Webb to study the planets in our solar system and other planetary systems in unprecedented detail. Moreover, the scientific instrument developed by Doyon’s team is designed to analyze many types of celestial bodies, including the atmospheric composition of distant exoplanets.
“What we’re looking for, our holy grail, are ‘biosignatures,’ that is, signs of extraterrestrial life,” explained iREx coordinator Nathalie Ouellette, an astrophysicist who does communications for the James Webb.
She hastened to add that we shouldn’t imagine these signs of life the way they are depicted in science fiction films: “We’re talking about finding signs of biological activity or the signature of certain molecules that we have identified as essential to life, such as oxygen, water vapour, carbon dioxide, methane and ozone. Based on the presence of such molecules, particularly in certain combinations, we may be able to determine that conditions are conducive to the development of life when we explore an exoplanet using the telescope.”
Casting light on the dawn of the universe
Telescopes are also time machines of a sort. “Looking into space is like looking into the past,” said Ouellette. “Light waves travel so fast that, to the naked eye, they seem to flash instantly from one point to another. In space, however, the distances are so vast that the time it takes light to travel is perceptible.”
That makes the Webb a marvellous time machine. It will be able to see back in time to 200 million years after the Big Bang, something that has never been done before. “With the Hubble, we could go to 500 million years after the Big Bang, so now we’re going 300 million years further,” noted Ouellette. “That’s remarkable, considering that the beginning of the universe was a tumultuous period. Galaxies were colliding and stars were forming at a rapid pace.”
“Tell me where you come from and I’ll tell you who you are”
The Webb will thus improve our understanding of the development of the first luminous objects (galaxies) over time. Ouellette believes the telescope will also provide insight into the creation of our own solar system.
“We still have many questions about the origins of life in our solar system. We don’t know exactly how we came to be on Earth and how the planets were formed,” Ouellette pointed out. “By studying other systems, stars and planets at various stages of development, we hope to be able to trace our own history and understand ourselves better.”
That is the ultimate goal of the James Webb: to revolutionize our understanding of the universe and, above all, to place the Earth, in all its fragility and uniqueness, in a broader context.
AUSTIN (KXAN) – We could soon bear witness to the origins of the universe.
After nearly 30 years and $10 billion, the James Webb Space Telescope will take flight. Launching Christmas Day, the telescope is the largest and most powerful space telescope ever built.
The James Webb Space Telescope is 100 times more powerful than the Hubble Space Telescope, which launched into orbit in 1990. Why is Webb so much more powerful than Hubble?
The science behind the James Webb Space Telescope
It is all about light. Light comes in many forms: ultraviolet, X-rays, infrared and visible light. Visible light is what our eyes can see, but it can only travel so far before it fades. While infrared light travels much farther and isn’t as easily blocked by objects in space. Earlier this month, NASA launched a satellite capable of seeing X-rays.
There are several forms of light, but human eyes can only see visible light. The Webb telescope can see infrared
Hubble has been our premiere space telescope for decades, but it primarily sees visible light, while the James Webb Space Telescope sees infrared.
“This means it will allow us to peer through clouds of gas and dust in our own galaxy, where stars are being born today,” said Eric Smith, Program Director and Program Scientist for the James Webb Space Telescope in an interview with the Associate Press.
Because infrared light travels longer distances before fading, Smith said it will allow us to see “farther back in time, to the time where the very first stars and galaxies were being born.”
Telescopes as time machines
How can we see the birth of stars and galaxies that happened billions of years ago.
“A telescope is really a time machine because light travels at a finite speed through the universe,” said Klaus Pontoppidan, an astronomer with the Space Telescope Science Institute in an interview with the Associated Press. “We see the universe as it existed when that light is emitted.”
For instance, it takes eight minutes for light to travel from the sun to the earth. So when you’re looking at the sun, you’re actually looking at the sun eight minutes in the past.
Pontoppidan says that by looking at light through the Webb Space Telescope, we’re looking at light that’s traveled 13-billion years. “We think we’ll see the first galaxies. We will find things that we have no idea exists right now.”
How the James Webb Space Telescope will see infrared
The telescope sees using a 21-foot wide gold mirror made up of several smaller gold panels, each of which can be adjusted to be collect light. To detect infrared light, it will need to be protected from our sun’s light. To do this, Webb uses a giant Mylar (the same stuff used in birthday balloons) sun shield.
The Webb Telescope uses a sun shield to protect itself from the sun’s light.
“There are five distinct layers (to the shield),” said David J. Hedland with Columbia University’s Department of Astronomy. “On the sun-facing side of the bottom layer, the temperature is about 250 degrees Fahrenheit. On the telescope facing side of the top layer, you’ve deflected so much of the light that the temperature is -375 degrees Fahrenheit.”
Getting the Webb telescope into orbit
Getting Webb into space isn’t easy. The telescope is so large it had to be folded up inside of the rocket that is launching it. It will do its work about 1 million miles from Earth at what is known as a Lagrange point.
A Lagrange point is sort of a fixed point in space, where the gravitational force of two celestial bodies keep a third object at roughly the same location while it orbits. Basically, the gravity of the Sun and the Earth will keep Webb at a point where the Earth is always blocking the telescope from the majority of the sun’s light.
Once Webb reaches this point, it will have to unfold itself from the rocket. This process could take months, at which point the telescope will have to align itself. If the something happens during this process, the telescope will be too far from Earth for anyone to be able to fix it.