Correo electrónico:

Contraseña:

Registrarse ahora!

¿Has olvidado tu contraseña?

DESENMASCARANDO LAS FALSAS DOCTRINAS
 
Novedades
  Únete ahora
  Panel de mensajes 
  Galería de imágenes 
 Archivos y documentos 
 Encuestas y Test 
  Lista de Participantes
 YHWH (DIOS PADRE) EL UNICO DIOS 
 JESUCRISTO NUESTRO MESIAS JUDIO 
 LOS DIEZ MANDAMIENTOS DE LA BIBLIA 
 MEJORE SU CARACTER Y SU VIDA 
 YOU TUBE-MAOR BA OLAM-LINKS 
 YOU TUBE-MAOR BA OLAM-LINKS II 
 BIBLIAS/CONCORDANCIA/LIBROS 
 MAYOR ENEMIGO DEL HOMBRE ES UNO MISMO 
 ¿LA TORA ES MACHISTA? -MENSAJE ESOTERICO Y EXOTERICO 
 ¿ES INMORTAL EL ALMA?- FALACIA DE LA ENCARNACION Y REENCARNACION 
 EL ISLAM TIENE ORIGEN UNITARIO ADOPCIONISTA 
 ANTIGUO TESTAMENTO-ESTUDIO POR VERSICULOS 
 NUEVO TESTAMENTO-ESTUDIOS POR VERSICULOS 
 NUEVO TESTAMENTO II-ESTUDIOS POR VERSICULOS 
 NUEVO TESTAMENTO III-ESTUDIOS POR VERSICULOS 
 CRISTO NO TUVO PREEXISTENCIA 
 ¿QUE ES EL ESPIRITU SANTO? 
 
 
  Herramientas
 
MARIA MAGDALENA - SANTO GRIAL: VIKING PROYECT TEST GENERAL RELATIVITY, NOVEMBER 25 1976 MARS MARY MAGDALENE
Elegir otro panel de mensajes
Tema anterior  Tema siguiente
Respuesta  Mensaje 1 de 26 en el tema 
De: BARILOCHENSE6999  (Mensaje original) Enviado: 23/12/2024 16:07

Viking Project tests general relativity, November 25, 1976

 

The Viking spacecraft arrived at Mars in the summer of 1976 and passed through superior conjunction on November 25, as Mars passed directly behind the Sun as seen from Earth. This provided researchers the opportunity to use the spacecraft in an experiment to test general relativity.


This image shows the surface of Mars looking across the Viking 2 Lander. (Source: NASA)

After completing the primary missions, the Viking continuation mission objectives included a radio science solar conjunction relativity experiment. Scientists began an experiment that used the landers and orbiters as transponders, sending radio signals to the lander on Mars and instructing the lander to the return signals. The round-trip travel times of the radio signals going from Earth to the Viking landers and orbiters were measured.

 

Using dual-band, one-way ranging allowed estimation of the contribution of the solar-corona plasma to the echo delays obtained from ranging to the spacecraft.

 

The data confirmed the Shapiro time delay effect, which states that radar signals passing near a massive object take slightly longer to travel to a target and longer to return than they would if the mass of the object were not present.

Cassini general relativity testA report, “Viking relativity experiment: verification of signal retardation by solar gravity” published in 1979 by researchers at MIT and the Jet Propulsion Laboratory, analyzed 14 months of data obtained from radio ranging to Viking to verify the prediction of the general theory of relativity.

Published by Albert Einstein in 1916, the general theory of relativity predicted that the round-trip or echo delays of light signals traveling between the Earth and Mars would be increased by the direct effect of solar gravity. The theory included gravitational time dilation, where time passes differently in regions of different gravitational potential.

NASA has continued to test general relativity, most recently with the Cassini space probe (see a NASA artist rending of its testing at right) and Gravity Probe B, which also confirmed the theory.

Related articles:


For more moments in tech history, see this blog. EDN strives to be historically accurate with these postings. Should you see an error, please notify us.

Editor’s note: This article was originally posted on November 25, 2013 and edited on November 25, 2019.

https://www.edn.com/viking-project-tests-general-relativity-november-25-1976/


Primer  Anterior  12 a 26 de 26  Siguiente   Último  
Respuesta  Mensaje 12 de 26 en el tema 
De: BARILOCHENSE6999 Enviado: 26/12/2024 16:19
Santa Maria Magdalena de Vezelay - Romanesque Architecture
Vezelay, Church and Hill - UNESCO World Heritage Site
Doppler effect
Basic Principles of Ultrasound Physics and Artifacts Made Easy - POCUS 101
Doppler Effect - StickMan Physics
Doppler Shift Equation and Redshift - GCSE Physics
Explain doppler effect in light distinguish between redshift and blue shift
Doppler Effect grade 12: Red and Blue Shift - YouTube
Have astronomers ever observed a violet shift like they have blue shifts  and red shifts? | Science Questions with Surprising Answers
Doppler Shift

Respuesta  Mensaje 13 de 26 en el tema 
De: BARILOCHENSE6999 Enviado: 26/12/2024 17:08
Climate Science Investigations South Florida - Energy: The Driver of Climate

Respuesta  Mensaje 14 de 26 en el tema 
De: BARILOCHENSE6999 Enviado: 26/12/2024 17:36
Wave-Particle Theory | CK-12 Foundation

Respuesta  Mensaje 15 de 26 en el tema 
De: BARILOCHENSE6999 Enviado: 27/12/2024 03:54

El proyecto Viking pone a prueba la relatividad general, 25 de noviembre de 1976

 

La sonda Viking llegó a Marte en el verano de 1976 y atravesó una conjunción superior el 25 de noviembre, cuando Marte pasó directamente detrás del Sol visto desde la Tierra. Esto brindó a los investigadores la oportunidad de utilizar la sonda en un experimento para probar la relatividad general.


Esta imagen muestra la superficie de Marte vista desde el módulo de aterrizaje Viking 2. (Fuente: NASA)

Después de completar las misiones principales, los objetivos de la misión de continuación de Viking incluyeron un experimento de radiociencia de relatividad de conjunción solar. Los científicos comenzaron un experimento que utilizó los módulos de aterrizaje y los orbitadores como transpondedores, enviando señales de radio al módulo de aterrizaje en Marte y dando instrucciones al módulo de aterrizaje para que respondiera las señales. Se midieron los tiempos de viaje de ida y vuelta de las señales de radio que iban desde la Tierra hasta los módulos de aterrizaje y los orbitadores Viking.

 

El uso de medición de distancia unidireccional de banda dual permitió estimar la contribución del plasma de la corona solar a los retrasos del eco obtenidos a partir de la medición de distancia a la nave espacial.

 

Los datos confirmaron el efecto de retardo temporal de Shapiro, que establece que las señales de radar que pasan cerca de un objeto masivo tardan ligeramente más en viajar hasta un objetivo y más tiempo en regresar que si la masa del objeto no estuviera presente.

Prueba de relatividad general de CassiniUn informe, “ Experimento de relatividad de Viking: verificación del retardo de la señal por la gravedad solar ”, publicado en 1979 por investigadores del MIT y del Laboratorio de Propulsión a Chorro, analizó 14 meses de datos obtenidos por radiotelemetría de Viking para verificar la predicción de la teoría general de la relatividad.

Publicada por Albert Einstein en 1916, la teoría general de la relatividad predijo que los retrasos de ida y vuelta o ecos de las señales de luz que viajan entre la Tierra y Marte se verían incrementados por el efecto directo de la gravedad solar. La teoría incluía la dilatación del tiempo gravitacional, según la cual el tiempo transcurre de manera diferente en regiones con diferente potencial gravitacional.

La NASA ha seguido poniendo a prueba la relatividad general, más recientemente con la sonda espacial Cassini (ver una representación artística de la NASA de sus pruebas a la derecha ) y con Gravity Probe B, que también confirmó la teoría.

Artículos relacionados:


Para conocer más momentos de la historia de la tecnología, consulte este blog . EDN se esfuerza por ser históricamente preciso en estas publicaciones. Si ve algún error, notifíquenoslo .

Nota del editor : este artículo se publicó originalmente el 25 de noviembre de 2013 y se editó el 25 de noviembre de 2019.

 


Respuesta  Mensaje 16 de 26 en el tema 
De: BARILOCHENSE6999 Enviado: 27/12/2024 04:00

Efecto Shapiro

 
 
 
Recreación artística del efecto de la gravedad del Sol en la señales procedentes de la sonda Cassini.

El efecto Shapiro, llamado así en honor del físico Irwin Shapiro (no confundir con el físico Stuart Louis Shapiro), es un efecto resultante de la relatividad general según el cual el tiempo de llegada de una señal que se propaga en el espacio se ve afectado por la presencia de materia en su cercanía. Este efecto es la doble combinación del hecho de que la señal observada ya no se propaga en línea recta —y, por lo tanto, recorre un camino más largo de lo que sería en ausencia de masa en su proximidad— y de que el transcurso del tiempo se ve afectado por la presencia de masa.

El efecto Shapiro es un efecto elemental de la relatividad general, pero al contrario que otros efectos de este tipo —refracción de la luz, precesión del periastrocorrimiento al rojo gravitacional— no se predijo en el momento del descubrimiento de la relatividad general, alrededor de 1915, sino cerca de cincuenta años más tarde, por Irwin Shapiro en 1964.1

El efecto Shapiro —dilatación gravitacional de desfases temporales— consiste en un retraso en los tiempos de llegada de los fotones que pasan cerca del Sol. Por tanto, no solo la trayectoria de la luz es desviada por el campo gravitatorio solar, sino que los fotones también son frenados.

Este efecto, nada despreciable, fue calculado y observado por primera vez por Shapiro en 1964. Su experiencia consistió en medir el tiempo de ida y vuelta de la Tierra a Mercurio de fotones de radio emitidos en nuestro planeta cuando su recorrido era próximo a la superficie solar. El menor o mayor tiempo para atravesar dicho campo está relacionado con las distancias relativas de la Tierra y Mercurio respecto al Sol.

 Medición en el sistema solar

[editar]

El efecto Shapiro se puede medir en el sistema solar, especialmente mediante el estudio de los tiempos de llegada de las señales emitidas por una sonda posada en otro planeta. La primera constatación precisa de la medida del efecto Shapiro fue hecha por las sondas Viking que aterrizaron en Marte.2​ Anteriormente, el efecto Shapiro se había detectado mediante el estudio del eco radar emitido desde la Tierra y reflejado en otro planeta.3​ Este primer método era relativamente impreciso porque el eco recibido era extremadamente débil (10-21 W para una señal emitida de 300 kW) y por el hecho de que la superficie del planeta sobre el que se reflejaba la señal era relativamente grande. A la inversa, las señales emitidas desde una sonda en un planeta eran mucho más precisas, pero con un coste considerablemente mayor, ya que requerían el envío de dicha nave espacial a un planeta.4

 Medición en púlsares binarios

[editar]

También se puede detectar en un púlsar binario, donde la emisión pulsátil extremadamente regular del púlsar es modulada por el efecto Shapiro como consecuencia del desplazamiento del púlsar alrededor de su compañera. En este caso, al ser el efecto directamente proporcional a la masa de la compañera del púlsar, permite determinar la masa de este bajo determinadas condiciones. Este efecto relativista, que permite determinar la masa de una o de ambas estrellas componentes conociendo los detalles de la órbita de un sistema binario, forma parte de los parámetros post keplerianos. El efecto Shapiro en un púlsar binario fue detectado por primera vez en PSR B1913+16, en 1984,5​ y unos años más tarde en PSR B1534+12 de manera mucho más convincente.

https://es.wikipedia.org/wiki/Efecto_Shapiro

Respuesta  Mensaje 17 de 26 en el tema 
De: BARILOCHENSE6999 Enviado: 27/12/2024 04:02

Radio Data Using Vikings on Mars Further Confirm Einstein Theory

 
  • Jan. 7, 1977
Radio Data Using Vikings on Mars Further Confirm Einstein Theory
Credit...The New York Times Archives
See the article in its original context from
January 7, 1977, Page 8 Buy Reprints
New York Times subscribers* enjoy full access to TimesMachine—view over 150 years of New York Times journalism, as it originally appeared.
*Does not include Crossword-only or Cooking-only subscribers.
About the Archive
This is a digitized version of an article from The Times’s print archive, before the start of online publication in 1996. To preserve these articles as they originally appeared, The Times does not alter, edit or update them.
Occasionally the digitization process introduces transcription errors or other problems; we are continuing to work to improve these archived versions.

The most accurate long‐distance measurements ever made, by means of radio signals between the Viking spacecraft on Mars and antennas on Earth, have produced new confirmation of Einstein's theory of relativity, a Viking project scientist reported yesterday.

The measurement was so incredibly precise, according to Dr. Irwin I. Shapiro of the Massachusetts Institute of Technology, that the “uncertainty” over span of 200 million miles was less than five feet—that is, an accuracy of five parts in 10 million millionths.

Dr. Shapiro and his colleagues on the Viking radio science team went to such pains to see if, as Einstein predicted, the sun's gravitational force bends and delays radio signals (or any form of radiation) as they travel particularly close to such a massive body.

Estimated Delay of Waves

And it did. Dr. Shapiro believes that, after further. analysis, the Viking experiment will show that the delay in the travel time of the radio waves caused by the sun's gravity was close to calculations (a delay of 200 millionths of a second) based on Einstein's theory.

 

Results of the experiment were reported at a news conference held at the Jet Propulsion Laboratory in Pasadena, Calif. The Viking 1 and 2 spacecraft are being controlled there.

The experiment was conducted last Nov. 25, Thanksgiving Day, at the time of solar conjunction. At that time, Mars moved behind the sun in relation to Earth, causing a total blackout of communications between the Vikings and Earth.

But just before and after the blackout, radio signals were transmitted from antennaes at Goldstone, Calif., and Canberra, Australia, to both of the Viking orbiters and landers and then from the spacecraft back to Earth. The round‐trip travel times of the signals were carefully clocked. The transmissions were repeated frequently to check for accuracy.

The results, Dr. Shapiro said, were “in very good agreement with the theory of general relativity.”

Not that he expected to prove Einstein wrong. Previous tests using spacecraft communications systems tended to confirm the theory, but the Viking test is considered twice as accurate, or more, than the previous ones.

In a telephone interview after the conference, Dr. Shapiro said:

“I would have been very surprised Einstein was wrong. But one just can't take theories for granted. Physics is an experimental approach to nature. Einstein came along to explain deviations in Newton's theory of gravity. And at some level of probing we may find Einstein's theory will break down and no longer be a totally adequate theory of the way nature behaves.”

 

Knowledge of gravitation is essential to the understanding of elementary particles, quasars and neutron stars and the very destiny of the universe—whether will go on expanding or eventually collapse on itself.

Possible Seismic Event on Mars

Other scientists reported at the news conference on a possible Martian seismic event recorded by the Viking 2 lander, the distinct day‐night differences of wind conditions at the Viking 2 site and heavy build‐up of clouds over the polar regions in recent weeks.

Dr. Donald L. Anderson of the California Institute of Technology, leader of the Viking seismology team, said that the Viking 2 lender's seismometer detected “an unusual event” in mid‐November. If it was a seismic tremor, it would be the first marsquake recorded by manmade instruments and, according to Dr. Anderson, must have occurred about 4,000 miles away from the landing site and been of a magnitude of six or more on the Richter scale, which is a major tremor on Earth.

Whatever it was, Dr. Anderson said, it occurred in the evening when the Martian winds that sometimes shake the spacecraft had died down and when vibration‐producing activity on board the spacecraft was at a minimum.

https://www.nytimes.com/1977/01/07/archives/radio-data-using-vikings-on-mars-further-confirm-einstein-theory.html

Respuesta  Mensaje 18 de 26 en el tema 
De: BARILOCHENSE6999 Enviado: 27/12/2024 04:32
John 19:34 Instead, one of the soldiers pierced His side with a spear, and  immediately blood and water flowed out.

Respuesta  Mensaje 19 de 26 en el tema 
De: BARILOCHENSE6999 Enviado: 27/12/2024 05:58
Si todos los caminos llevan a Roma...
Resultado de imagen para SANTIAGO Y JUAN EFESO Y ESPAÑA
Resultado de imagen para MARIANO URRESTI LIBROS
Famous face on Mars photo was taken by Viking 1 and other important events  in history |Oneindia News - YouTube
eventosfueradeltiempo.htm
 
Pin en reflexiones del dia
El escepticismo de los tontos – Juristas UNAM
Видео famous vikings
????The Face on Mars????... - Science: evidence is intelligence | Facebook
Famous face on Mars photo was taken by Viking 1 and other important events  in history |Oneindia News - YouTube
Santiago Apóstol, 25 de julio, Patrón de España | Fundación Hispano  Británica FHB
Santiago Apóstol, patrón de España | El pan de los pobres
Biografía de Santiago el Mayor - ACI Prensa
Santoral de hoy 25 de julio: Santiago Apóstol
0514 Daniel 725 The set times and the laws PowerPoint Church Sermon |  PowerPoint Slide Presentation Sample | Slide PPT | Template Presentation
Daniel 7:25 And he shall speak great words against the most High, and shall  wear out the saints of the most High, and think to change times and laws:  and they shall
DANIEL 7:25 | “Rediscovering YHVH'S Authentic Ekklesia"
Daniel Chapter 7 Daniel Introduction 1 2 3
Daniel 7:25 KJV - And he shall speak great words against the most High, and  shall wear out the saints of the most High, and think to change times and  laws: and

Respuesta  Mensaje 20 de 26 en el tema 
De: BARILOCHENSE6999 Enviado: 27/12/2024 06:07
MARTE - DESENMASCARANDO LAS FALSAS DOCTRINAS - Gabitos

Respuesta  Mensaje 21 de 26 en el tema 
De: Alexjohnson Enviado: 27/12/2024 06:26
A Palatine Hill tour is an amazing way to explore one of Rome’s most important archaeological sites. The Palatine Hill is considered the birthplace of Rome and offers stunning views of the Roman Forum and the Colosseum. With a guide, you’ll learn about its significance in Roman mythology and its transformation into the residence of emperors.Visit here: https://showmeitaly.com

Respuesta  Mensaje 22 de 26 en el tema 
De: BARILOCHENSE6999 Enviado: 27/12/2024 13:59

Time in General Relativity

LEARNING OBJECTIVES

By the end of this section, you will be able to:

  • Describe how Einsteinian gravity slows clocks and can decrease a light wave’s frequency of oscillation
  • Recognize that the gravitational decrease in a light wave’s frequency is compensated by an increase in the light wave’s wavelength—the so-called gravitational redshift—so that the light continues to travel at constant speed

General relativity theory makes various predictions about the behavior of space and time. One of these predictions, put in everyday terms, is that the stronger the gravity, the slower the pace of time. Such a statement goes very much counter to our intuitive sense of time as a flow that we all share. Time has always seemed the most democratic of concepts: all of us, regardless of wealth or status, appear to move together from the cradle to the grave in the great current of time.

But Einstein argued that it only seems this way to us because all humans so far have lived and died in the gravitational environment of Earth. We have had no chance to test the idea that the pace of time might depend on the strength of gravity, because we have not experienced radically different gravities. Moreover, the differences in the flow of time are extremely small until truly large masses are involved. Nevertheless, Einstein’s prediction has now been tested, both on Earth and in space.

The Tests of Time

An ingenious experiment in 1959 used the most accurate atomic clock known to compare time measurements on the ground floor and the top floor of the physics building at Harvard University. For a clock, the experimenters used the frequency (the number of cycles per second) of gamma rays emitted by radioactive cobalt. Einstein’s theory predicts that such a cobalt clock on the ground floor, being a bit closer to Earth’s center of gravity, should run very slightly slower than the same clock on the top floor. This is precisely what the experiments observed. Later, atomic clocks were taken up in high-flying aircraft and even on one of the Gemini space flights. In each case, the clocks farther from Earth ran a bit faster. While in 1959 it didn’t matter much if the clock at the top of the building ran faster than the clock in the basement, today that effect is highly relevant. Every smartphone or device that synchronizes with a GPS must correct for this (as we will see in the next section) since the clocks on satellites will run faster than clocks on Earth.

The effect is more pronounced if the gravity involved is the Sun’s and not Earth’s. If stronger gravity slows the pace of time, then it will take longer for a light or radio wave that passes very near the edge of the Sun to reach Earth than we would expect on the basis of Newton’s law of gravity. (It takes longer because spacetime is curved in the vicinity of the Sun.) The smaller the distance between the ray of light and the edge of the Sun at closest approach, the longer will be the delay in the arrival time.

In November 1976, when the two Viking spacecraft were operating on the surface of Mars, the planet went behind the Sun as seen from Earth (Figure 1). Scientists had preprogrammed Viking to send a radio wave toward Earth that would go extremely close to the outer regions of the Sun. According to general relativity, there would be a delay because the radio wave would be passing through a region where time ran more slowly. The experiment was able to confirm Einstein’s theory to within 0.1%.

 

Time Delays for Radio Waves near the Sun. The curvature of spacetime near the Sun is shown in this diagram with the Sun at the bottom of a sag (similar to that illustrated in Figure 24_03_Spacetime]). The Viking spacecraft is at upper right, the Earth is at lower left and the Sun is between the two. The radio signal from Viking is drawn as a red arrow that goes down into the

 

Figure 1. Time Delays for Radio Waves near the Sun: Radio signals from the Viking lander on Mars were delayed when they passed near the Sun, where spacetime is curved relatively strongly. In this picture, spacetime is pictured as a two-dimensional rubber sheet.

Gravitational Redshift

What does it mean to say that time runs more slowly? When light emerges from a region of strong gravity where time slows down, the light experiences a change in its frequency and wavelength. To understand what happens, let’s recall that a wave of light is a repeating phenomenon—crest follows crest with great regularity. In this sense, each light wave is a little clock, keeping time with its wave cycle. If stronger gravity slows down the pace of time (relative to an outside observer), then the rate at which crest follows crest must be correspondingly slower—that is, the waves become less frequent.

To maintain constant light speed (the key postulate in Einstein’s theories of special and general relativity), the lower frequency must be compensated by a longer wavelength. This kind of increase in wavelength (when caused by the motion of the source) is what we called a redshift in Radiation and Spectra. Here, because it is gravity and not motion that produces the longer wavelengths, we call the effect a gravitational redshift.

The advent of space-age technology made it possible to measure gravitational redshift with very high accuracy. In the mid-1970s, a hydrogen maser, a device akin to a laser that produces a microwave radio signal at a particular wavelength, was carried by a rocket to an altitude of 10,000 kilometers. Instruments on the ground were used to compare the frequency of the signal emitted by the rocket-borne maser with that from a similar maser on Earth. The experiment showed that the stronger gravitational field at Earth’s surface really did slow the flow of time relative to that measured by the maser in the rocket. The observed effect matched the predictions of general relativity to within a few parts in 100,000.

These are only a few examples of tests that have confirmed the predictions of general relativity. Today, general relativity is accepted as our best description of gravity and is used by astronomers and physicists to understand the behavior of the centers of galaxies, the beginning of the universe, and the subject with which we began this chapter—the death of truly massive stars.

Relativity: A Practical Application

By now you may be asking: why should I be bothered with relativity? Can’t I live my life perfectly well without it? The answer is you can’t. Every time a pilot lands an airplane or you use a GPS to determine where you are on a drive or hike in the back country, you (or at least your GPS-enabled device) must take the effects of both general and special relativity into account.

GPS relies on an array of 24 satellites orbiting the Earth, and at least 4 of them are visible from any spot on Earth. Each satellite carries a precise atomic clock. Your GPS receiver detects the signals from those satellites that are overhead and calculates your position based on the time that it has taken those signals to reach you. Suppose you want to know where you are within 50 feet (GPS devices can actually do much better than this). Since it takes only 50 billionths of a second for light to travel 50 feet, the clocks on the satellites must be synchronized to at least this accuracy—and relativistic effects must therefore be taken into account.

The clocks on the satellites are orbiting Earth at a speed of 14,000 kilometers per hour and are moving much faster than clocks on the surface of Earth. According to Einstein’s theory of relativity, the clocks on the satellites are ticking more slowly than Earth-based clocks by about 7 millionths of a second per day. (We have not discussed the special theory of relativity, which deals with changes when objects move very fast, so you’ll have to take our word for this part.)

The orbits of the satellites are 20,000 kilometers above Earth, where gravity is about four times weaker than at Earth’s surface. General relativity says that the orbiting clocks should tick about 45 millionths of a second faster than they would on Earth. The net effect is that the time on a satellite clock advances by about 38 microseconds per day. If these relativistic effects were not taken into account, navigational errors would start to add up and positions would be off by about 7 miles in only a single day.

KEY CONCEPTS AND SUMMARY

General relativity predicts that the stronger the gravity, the more slowly time must run. Experiments on Earth and with spacecraft have confirmed this prediction with remarkable accuracy. When light or other radiation emerges from a compact smaller remnant, such as a white dwarf or neutron star, it shows a gravitational redshift due to the slowing of time.

Glossary

gravitational redshift:

an increase in wavelength of an electromagnetic wave (light) when propagating from or near a massive object

https://courses.lumenlearning.com/suny-astronomy/chapter/time-in-general-relativity/#:~:text=Scientists%20had%20preprogrammed%20Viking%20to,where%20time%20ran%20more%20slowly.

Respuesta  Mensaje 23 de 26 en el tema 
De: BARILOCHENSE6999 Enviado: 27/12/2024 14:14

La sonda espacial con destino a Saturno pone a prueba la teoría de Einstein

Concepto artístico del experimento de relatividad general.Concepto artístico del experimento de relatividad general.

Un experimento realizado por científicos italianos con datos de la nave espacial Cassini de la NASA, actualmente en camino a Saturno, confirma la teoría de la relatividad general de Einstein con una precisión 50 veces mayor que las mediciones anteriores.

Los resultados aparecen en la edición del 25 de septiembre de la revista Nature. Forman parte de una colaboración científica entre la NASA y la Agencia Espacial Italiana. El experimento tuvo lugar en el verano de 2002, cuando la nave espacial y la Tierra se encontraban en lados opuestos del Sol, separados por una distancia de más de mil millones de kilómetros (aproximadamente 621 millones de millas).

Los investigadores observaron el cambio de frecuencia de las ondas de radio que se transmitían desde y hacia la nave espacial a medida que pasaban cerca del Sol. Midieron con precisión el cambio en el tiempo de ida y vuelta de la señal de radio a medida que viajaba cerca del Sol. El tiempo de ida y vuelta es el tiempo que tarda la señal transmitida desde la estación de la Red del Espacio Profundo en Goldstone, California, hasta la nave espacial en el otro lado del Sol y de regreso viajando a la velocidad de la luz.

"La importancia científica de estos resultados es la confirmación de la teoría de la relatividad general y la concordancia con las formulaciones de Einstein con una precisión experimental sin precedentes", dijo Sami Asmar, director del Radio Science Group, que adquirió los datos para este experimento en el Laboratorio de Propulsión a Chorro de la NASA en Pasadena, California. "La importancia tecnológica del experimento es la capacidad de superar el duro entorno solar mediante enlaces de radio".

Los investigadores midieron en qué medida la gravedad del Sol curvaba un rayo electromagnético, en este caso la señal de radio transmitida por la nave espacial y recibida por las estaciones terrestres.

Según la teoría de la relatividad general, un objeto masivo como el Sol hace que el espacio-tiempo se curve, y un haz de ondas de radio (o luz) que pasa por el Sol tiene que viajar más lejos debido a la curvatura. La distancia adicional que recorren las ondas de radio desde Cassini pasando por el Sol hasta la Tierra retrasa su llegada; la magnitud del retraso proporciona una prueba sensible de las predicciones de la teoría de Einstein. Aunque se esperan desviaciones de la relatividad general en algunos modelos cosmológicos, no se encontró ninguna en este experimento.

Las pruebas de la relatividad general tienen importantes implicaciones cosmológicas. La cuestión no es si la relatividad general es verdadera o falsa, sino a partir de qué nivel de precisión deja de describir la gravedad de forma realista.

Pruebas anteriores de la relatividad general confirmaron la predicción de Einstein con una precisión de una parte por mil. Esta precisión se logró en 1979 utilizando las sondas Viking en Marte. El experimento Cassini la confirmó con una precisión de 20 partes por millón. La clave de esta mejora ha sido la adopción de nuevas tecnologías en las telecomunicaciones espaciales.

El experimento no se hubiera podido realizar con este nivel de precisión en el pasado debido al ruido en el enlace de radio introducido por la corona solar. Con el experimento Cassini, este obstáculo se superó equipando el sistema de comunicación de la nave espacial con múltiples enlaces en diferentes frecuencias. Esta nueva capacidad en la nave espacial Cassini y en la antena de 34 metros (112 pies) de diámetro en Goldstone, permitió a los científicos eliminar los efectos del plasma interplanetario y solar de los datos de radio. Además, el ruido de la atmósfera de la Tierra se redujo considerablemente mediante un equipo especial instalado en el complejo Goldstone. Estos avances tecnológicos desarrollados para la misión Cassini han llevado a precisiones sin precedentes en las mediciones de velocidad, lo que beneficia a futuros experimentos científicos, así como a la navegación en el espacio profundo.

Los experimentos son parte de una serie de experimentos de radiociencia planificados para la fase de crucero de la misión, incluida la búsqueda de ondas gravitacionales de baja frecuencia.

Cassini comenzará a orbitar Saturno el 1 de julio de 2004 y liberará su sonda Huygens unos seis meses después para descender a través de la espesa atmósfera de la luna Titán.

Cassini-Huygens es una misión cooperativa de la NASA, la Agencia Espacial Europea y la Agencia Espacial Italiana. El JPL, una división de Caltech, administra la misión para la Oficina de Ciencias Espaciales de la NASA en Washington, DC. Los autores del artículo de Nature, "Una nueva prueba de la relatividad general con la misión espacial Cassini", son el Dr. Bruno Bertotti de la Universidad de Pavía, Italia; el Dr. Luciano Iess de la Universidad de Roma "La Sapienza", Italia; y el Dr. Paolo Tortora de la Universidad de Bolonia, Italia.

https://solarsystem-nasa-gov.translate.goog/news/12249/saturn-bound-spacecraft-tests-einsteins-theory/?_x_tr_sl=en&_x_tr_tl=es&_x_tr_hl=es&_x_tr_pto=sc

Respuesta  Mensaje 24 de 26 en el tema 
De: BARILOCHENSE6999 Enviado: 27/12/2024 15:04
Si todos los caminos llevan a Roma...
Resultado de imagen para SANTIAGO Y JUAN EFESO Y ESPAÑA
Resultado de imagen para MARIANO URRESTI LIBROS
Famous face on Mars photo was taken by Viking 1 and other important events  in history |Oneindia News - YouTube
Hoja informativa del proyecto Viking

Cortesía de la NASA



 

 

Viking fue la culminación de una serie de misiones para explorar el planeta Marte ; comenzaron en 1964 con el Mariner 4, y continuaron con los sobrevuelos del Mariner 6 y 7 en 1969, y la misión orbital del Mariner 9 en 1971 y 1972.

La Viking fue diseñada para orbitar Marte y aterrizar y operar en la superficie del planeta. Se construyeron dos naves espaciales idénticas, cada una compuesta por un módulo de aterrizaje y un orbitador.

El Centro de Investigación Langley de la NASA en Hampton, Virginia, fue el responsable de la gestión del proyecto Viking desde su inicio en 1968 hasta el 1 de abril de 1978, cuando el Laboratorio de Propulsión a Chorro asumió la tarea. Martin Marietta Aerospace en Denver, Colorado, desarrolló los módulos de aterrizaje. El Centro de Investigación Lewis de la NASA en Cleveland, Ohio, fue el responsable de los vehículos de lanzamiento Titán-Centauro. La tarea inicial del JPL fue el desarrollo de los orbitadores, el seguimiento y la adquisición de datos, y el Centro de Control de Misión y Computación.

La NASA lanzó ambas naves espaciales desde Cabo Cañaveral, Florida: la Viking 1 el 20 de agosto de 1975 y la Viking 2 el 9 de septiembre de 1975. Las sondas fueron esterilizadas antes del lanzamiento para evitar la contaminación de Marte con organismos de la Tierra. La nave espacial pasó casi un año navegando hacia Marte. La Viking 1 alcanzó la órbita de Marte el 19 de junio de 1976; la Viking 2 comenzó a orbitar Marte el 7 de agosto de 1976.

Después de estudiar las fotografías del orbitador, el equipo de certificación del sitio de aterrizaje de Viking consideró que el lugar de aterrizaje original de Viking 1 no era seguro. El equipo examinó los sitios cercanos y Viking 1 aterrizó el 20 de julio de 1976 en la ladera occidental de Chryse Planitia (las llanuras de oro) a 22,3° de latitud norte y 48,0° de longitud.

El equipo de certificación del sitio también decidió que el lugar de aterrizaje planeado para Viking 2 no era seguro después de examinar fotografías de alta resolución. La certificación de un nuevo lugar de aterrizaje se llevó a cabo a tiempo para un aterrizaje en Marte el 3 de septiembre de 1976, en Utopia Planitia, a 47,7° de latitud norte y 225,8° de longitud.

La misión Viking estaba prevista para continuar durante 90 días después del aterrizaje. Cada orbitador y módulo de aterrizaje funcionó mucho más allá de su vida útil prevista. El Viking Orbiter 1 superó los cuatro años de operaciones de vuelo activas en la órbita de Marte.

La misión principal del proyecto Viking finalizó el 15 de noviembre de 1976, 11 días antes de la conjunción superior de Marte (su paso por detrás del Sol). Después de la conjunción, a mediados de diciembre de 1976, los controladores restablecieron las operaciones de telemetría y comando y comenzaron las operaciones de la misión extendida.

La primera nave espacial que dejó de funcionar fue la Viking Orbiter 2 el 25 de julio de 1978; la nave espacial había utilizado todo el gas de su sistema de control de actitud, que mantenía los paneles solares de la nave apuntando al Sol para alimentar el orbitador. Cuando la nave espacial se alejó de la línea del Sol, los controladores del JPL enviaron órdenes para apagar el transmisor de la Viking Orbiter 2.

En 1978, la Viking Orbiter 1 empezó a quedarse sin gas para el control de actitud, pero gracias a una cuidadosa planificación para conservar el suministro restante, los ingenieros descubrieron que era posible seguir adquiriendo datos científicos a un nivel reducido durante otros dos años. El suministro de gas finalmente se agotó y la Viking Orbiter 1 dejó de funcionar el 7 de agosto de 1980, después de 1.489 órbitas alrededor de Marte.

Los últimos datos de la sonda Viking Lander 2 llegaron a la Tierra el 11 de abril de 1980. La sonda Lander 1 realizó su última transmisión a la Tierra el 11 de noviembre de 1982. Los controladores del JPL intentaron, sin éxito, durante otros seis meses y medio recuperar el contacto con la sonda Viking Lander 1. La misión finalizó el 21 de mayo de 1983.

Con una sola excepción (los instrumentos sísmicos), los instrumentos científicos adquirieron más datos de los esperados. El sismómetro de la sonda Viking Lander 1 no funcionó después del aterrizaje y el sismómetro de la sonda Viking Lander 2 detectó solo un evento que pudo haber sido sísmico. Sin embargo, proporcionó datos sobre la velocidad del viento en el lugar de aterrizaje para complementar la información del experimento meteorológico y mostró que Marte tiene un fondo sísmico muy bajo.

Los tres experimentos de biología descubrieron una actividad química inesperada y enigmática en el suelo marciano, pero no aportaron pruebas claras de la presencia de microorganismos vivos en el suelo cercano a los lugares de aterrizaje. Según los biólogos de la misión, Marte se autoesteriliza. Creen que la combinación de la radiación ultravioleta solar que satura la superficie, la extrema sequedad del suelo y la naturaleza oxidante de la química del suelo impiden la formación de organismos vivos en el suelo marciano. La cuestión de si hubo vida en Marte en algún momento del pasado lejano sigue abierta.

Los instrumentos de cromatografía de gases y espectrómetro de masas de los módulos de aterrizaje no detectaron ningún signo de química orgánica en ninguno de los dos lugares de aterrizaje, pero sí proporcionaron un análisis preciso y definitivo de la composición de la atmósfera marciana y encontraron elementos traza no detectados anteriormente. Los espectrómetros de fluorescencia de rayos X midieron la composición elemental del suelo marciano.

La sonda Viking midió las propiedades físicas y magnéticas del suelo. A medida que descendían hacia la superficie, también midieron la composición y las propiedades físicas de la atmósfera superior marciana.

Los dos módulos de aterrizaje monitorizaron continuamente el tiempo en los lugares de aterrizaje. El tiempo en pleno verano marciano era repetitivo, pero en otras estaciones se volvía variable y más interesante. Aparecieron variaciones cíclicas en los patrones meteorológicos (probablemente el paso de ciclones y anticiclones alternos). Las temperaturas atmosféricas en el lugar de aterrizaje sur (Viking Lander 1) fueron tan altas como -14 °C (7 °F) al mediodía, y la temperatura de verano antes del amanecer fue de -77 °C (-107 °F). En contraste, las temperaturas diurnas en el lugar de aterrizaje norte (Viking Lander 2) durante las tormentas de polvo de mediados de invierno variaron tan poco como 4 °C (7 °F) algunos días. La temperatura más baja antes del amanecer fue de -120 °C (-184 °F), aproximadamente el punto de congelación del dióxido de carbono. Una fina capa de escarcha de agua cubría el suelo alrededor de Viking Lander 2 cada invierno.

La presión barométrica varía en cada lugar de aterrizaje cada seis meses, porque el dióxido de carbono, el principal componente de la atmósfera, se congela formando un inmenso casquete polar, alternativamente en cada polo. El dióxido de carbono forma una gran capa de nieve y luego se evapora de nuevo con la llegada de la primavera en cada hemisferio. Cuando el casquete polar sur era más grande, la presión media diaria observada por la Viking Lander 1 era tan baja como 6,8 milibares; en otras épocas del año era tan alta como 9,0 milibares. Las presiones en el lugar de aterrizaje de la Viking Lander 2 fueron de 7,3 y 10,8 milibares. (A modo de comparación, la presión superficial en la Tierra a nivel del mar es de unos 1.000 milibares).

Los vientos marcianos suelen soplar más lentamente de lo esperado. Los científicos habían esperado que alcanzaran velocidades de varios cientos de kilómetros por hora a partir de las tormentas de polvo globales observadas, pero ninguno de los módulos de aterrizaje registró ráfagas superiores a los 120 kilómetros por hora y las velocidades medias fueron considerablemente inferiores. No obstante, los orbitadores observaron más de una docena de pequeñas tormentas de polvo. Durante el primer verano austral se produjeron dos tormentas de polvo globales, con una diferencia de unos cuatro meses terrestres. Ambas tormentas oscurecieron el Sol en los lugares de aterrizaje durante un tiempo y ocultaron la mayor parte de la superficie del planeta a las cámaras de los orbitadores. Los fuertes vientos que provocaron las tormentas soplaron en el hemisferio sur.

Las fotografías tomadas desde los módulos de aterrizaje y los orbitadores superaron las expectativas en cuanto a calidad y calidad. El total superó las 4.500 tomadas desde los módulos de aterrizaje y las 52.000 tomadas desde los orbitadores. Los módulos de aterrizaje proporcionaron la primera mirada de cerca a la superficie, monitorearon las variaciones en la opacidad atmosférica a lo largo de varios años marcianos y determinaron el tamaño medio de los aerosoles atmosféricos. Las cámaras de los orbitadores observaron terrenos nuevos y a menudo desconcertantes y proporcionaron detalles más claros sobre características conocidas, incluidas algunas observaciones en color y estéreo. Los orbitadores de Viking cartografiaron el 97 por ciento de la superficie marciana.

Los cartografiadores térmicos infrarrojos y los detectores de agua atmosférica de los orbitadores adquirieron datos casi a diario, observando el planeta en baja y alta resolución. La enorme cantidad de datos de los dos instrumentos requerirá un tiempo considerable para el análisis y la comprensión de la meteorología global de Marte. Viking también determinó definitivamente que el manto de hielo residual del polo norte (que sobrevive al verano boreal) es hielo de agua, en lugar de dióxido de carbono congelado (hielo seco) como se creía anteriormente.

El análisis de las señales de radio de los módulos de aterrizaje y los orbitadores (incluidos los datos Doppler, de distancia y de ocultación, y la intensidad de la señal del enlace de retransmisión entre el módulo de aterrizaje y el orbitador) proporcionó una variedad de información valiosa.

Otros descubrimientos importantes de la misión Viking incluyen:

  • La superficie marciana es un tipo de arcilla rica en hierro que contiene una sustancia altamente oxidante que libera oxígeno cuando se moja.

     

  • La superficie no contiene moléculas orgánicas detectables a nivel de partes por mil millones: menos, de hecho, que las muestras de suelo traídas de la Luna por los astronautas del Apolo.

     

  • El nitrógeno, nunca antes detectado, es un componente significativo de la atmósfera marciana, y el enriquecimiento de los isótopos más pesados ​​de nitrógeno y argón en relación con los isótopos más ligeros implica que la densidad atmosférica era mucho mayor que en el pasado distante.

     

  • Los cambios en la superficie marciana se producen con extrema lentitud, al menos en los lugares de aterrizaje de la sonda Viking. Durante la duración de la misión, solo se produjeron unos pocos cambios menores.

     

  • La mayor concentración de vapor de agua en la atmósfera se da cerca del borde del casquete polar norte a mediados del verano. Desde el verano hasta el otoño, la concentración máxima se desplaza hacia el ecuador, con una disminución del 30 por ciento en la abundancia máxima. En el verano austral, el planeta está seco, probablemente también como efecto de las tormentas de polvo.

     

  • La densidad de ambos satélites de Marte es baja (unos dos gramos por centímetro cúbico), lo que implica que se originaron como asteroides capturados por la gravedad de Marte. La superficie de Fobos está marcada por dos familias de estrías paralelas, probablemente fracturas causadas por un gran impacto que casi pudo haber destrozado a Fobos.

     

  • Las mediciones del tiempo de ida y vuelta de las señales de radio entre la Tierra y la sonda Viking, realizadas mientras Marte se encontraba más allá del Sol (cerca de las conjunciones solares), han determinado que el retraso de las señales es causado por el campo gravitatorio del Sol. El resultado confirma la predicción de Albert Einstein con una precisión estimada del 0,1 por ciento, veinte veces mayor que cualquier otra prueba.

     

  • La presión atmosférica varía un 30 por ciento durante el año marciano porque el dióxido de carbono se condensa y sublima en los casquetes polares.

     

  • La capa norte permanente es hielo de agua; la capa sur probablemente retiene algo de hielo de dióxido de carbono durante el verano.

     

  • El vapor de agua es relativamente abundante sólo en el extremo norte durante el verano, pero el agua subterránea (permafrost) cubre gran parte, si no todo, del planeta.

     

  • Los hemisferios norte y sur son drásticamente diferentes climáticamente, debido a las tormentas de polvo globales que se originan en el sur en verano.
https://solarviews-com.translate.goog/span/vikingfs.htm?_x_tr_sl=en&_x_tr_tl=es&_x_tr_hl=es&_x_tr_pto=sc

Respuesta  Mensaje 25 de 26 en el tema 
De: BARILOCHENSE6999 Enviado: 27/12/2024 15:42
Einstein's theory of gravity holds – even in extreme conditions

Respuesta  Mensaje 26 de 26 en el tema 
De: BARILOCHENSE6999 Enviado: 27/12/2024 16:22

24.4: El tiempo en la relatividad general

 
Objetivos de aprendizaje

Al finalizar esta sección usted podrá:

  • Describe cómo la gravedad de Einstein ralentiza los relojes y puede disminuir la frecuencia de oscilación de una onda de luz.
  • Reconocer que la disminución gravitacional en la frecuencia de una onda de luz se compensa con un aumento en la longitud de onda de la onda de luz (el llamado desplazamiento al rojo gravitacional), de modo que la luz continúa viajando a una velocidad constante.

La teoría de la relatividad general hace varias predicciones sobre el comportamiento del espacio y el tiempo. Una de estas predicciones, expresada en términos cotidianos, es que cuanto más fuerte es la gravedad, más lento es el ritmo del tiempo . Tal afirmación es muy contraria a nuestra noción intuitiva del tiempo como un flujo que todos compartimos. El tiempo siempre ha parecido el concepto más democrático: todos nosotros, independientemente de nuestra riqueza o estatus, parecemos movernos juntos desde la cuna hasta la tumba en la gran corriente del tiempo.

Pero Einstein argumentó que esto sólo nos parece así porque todos los humanos hasta ahora hemos vivido y muerto en el entorno gravitacional de la Tierra. No hemos tenido la oportunidad de poner a prueba la idea de que el ritmo del tiempo podría depender de la fuerza de la gravedad, porque no hemos experimentado gravedades radicalmente diferentes. Además, las diferencias en el flujo del tiempo son extremadamente pequeñas hasta que se ven involucradas masas verdaderamente grandes. Sin embargo, la predicción de Einstein ya ha sido puesta a prueba, tanto en la Tierra como en el espacio.

 

Las pruebas del tiempo

En 1959, un ingenioso experimento utilizó el reloj atómico más preciso conocido para comparar las mediciones de tiempo en la planta baja y en el piso superior del edificio de física de la Universidad de Harvard. Como reloj, los experimentadores utilizaron la frecuencia (el número de ciclos por segundo) de los rayos gamma emitidos por el cobalto radiactivo. La teoría de Einstein predice que un reloj de cobalto de la planta baja, al estar un poco más cerca del centro de gravedad de la Tierra, debería funcionar ligeramente más lento que el mismo reloj del piso superior. Esto es precisamente lo que observaron los experimentos. Más tarde, los relojes atómicos se incorporaron a los aviones que volaban a gran altura e incluso en uno de los vuelos espaciales Gemini. En cada caso, los relojes más alejados de la Tierra funcionaron un poco más rápido. Si bien en 1959 no importaba mucho si el reloj de la parte superior del edificio funcionaba más rápido que el del sótano, hoy ese efecto es muy relevante. Todo teléfono inteligente o dispositivo que se sincronice con un GPS debe tener en cuenta esto (como veremos en la siguiente sección) ya que los relojes de los satélites funcionarán más rápido que los relojes de la Tierra.

El efecto es más pronunciado si la gravedad involucrada es la del Sol y no la de la Tierra. Si una gravedad más fuerte ralentiza el paso del tiempo, entonces una onda de luz o de radio que pase muy cerca del borde del Sol tardará más en llegar a la Tierra de lo que esperaríamos según la ley de la gravedad de Newton (tardará más porque el espacio-tiempo se curva en las proximidades del Sol). Cuanto menor sea la distancia entre el rayo de luz y el borde del Sol en su aproximación más cercana, mayor será el retraso en el tiempo de llegada.

En noviembre de 1976, cuando las dos naves espaciales Viking operaban en la superficie de Marte, el planeta pasó detrás del Sol visto desde la Tierra (Figura 24.4.1  24.4.1). Los científicos habían programado previamente a Viking para que enviara una onda de radio hacia la Tierra que pasaría extremadamente cerca de las regiones exteriores del Sol. Según la relatividad general, habría un retraso porque la onda de radio pasaría por una región donde el tiempo transcurría más lentamente. El experimento pudo confirmar la teoría de Einstein con un margen de error del 0,1%.

altCifra 24.4.124.4.1Retrasos temporales de las ondas de radio cerca del Sol. Las señales de radio de la sonda Viking en Marte sufrieron retrasos cuando pasaron cerca del Sol, donde el espacio-tiempo presenta una curvatura relativamente pronunciada. En esta imagen, el espacio-tiempo se representa como una lámina de goma bidimensional.

Desplazamiento al rojo gravitacional

¿Qué significa que el tiempo transcurre más lentamente? Cuando la luz emerge de una región de fuerte gravedad donde el tiempo se ralentiza, la luz experimenta un cambio en su frecuencia y longitud de onda. Para entender lo que sucede, recordemos que una onda de luz es un fenómeno que se repite: una cresta sigue a otra con gran regularidad. En este sentido, cada onda de luz es un pequeño reloj que marca el ritmo de su ciclo de onda. Si una gravedad más fuerte ralentiza el ritmo del tiempo (en relación con un observador externo), entonces la velocidad a la que una cresta sigue a otra debe ser correspondientemente más lenta, es decir, las ondas se vuelven menos frecuentes .

Para mantener constante la velocidad de la luz (el postulado clave en las teorías de la relatividad especial y general de Einstein), la menor

frecuencia
Debe ser compensado por un período más largo.
longitud de onda
Este tipo de aumento en
longitud de onda
(cuando es causada por el movimiento de la fuente) es lo que llamamos unacorrimiento al rojoen
Radiación
y Spectra. Aquí, porque es
gravedad
y no el movimiento que produce las longitudes de onda más largas, llamamos al efecto undesplazamiento al rojo gravitacional .

 

La llegada de la tecnología de la era espacial hizo posible medir

desplazamiento al rojo gravitacional
con una precisión muy alta. A mediados de la década de 1970, un hidrógeno máser, un dispositivo similar a un láser que produce una
microonda
señal de radio en un determinado
longitud de onda
, fue transportado por un cohete a una altitud de 10.000 kilómetros. Se utilizaron instrumentos en tierra para comparar la
frecuencia
de la señal emitida por el máser del cohete con la de un máser similar en la Tierra. El experimento demostró que el campo gravitatorio más fuerte en la superficie de la Tierra realmente ralentizó el paso del tiempo en relación con el medido por el máser en el cohete. El efecto observado coincidió con las predicciones de la relatividad general con una precisión de unas pocas partes en 100.000.

 

Estos son sólo algunos ejemplos de pruebas que han confirmado las predicciones de la relatividad general. Hoy en día, la relatividad general se acepta como nuestra mejor descripción de la

gravedad
y es utilizado por astrónomos y físicos para comprender el comportamiento de los centros de las galaxias, el comienzo del universo y el tema con el que comenzamos este capítulo: la muerte de estrellas verdaderamente masivas.

 

Relatividad: una aplicación práctica

A estas alturas, puede que te preguntes: ¿por qué debería preocuparme por la relatividad? ¿Acaso no puedo vivir perfectamente sin ella? La respuesta es que no puedes. Cada vez que un piloto aterriza un avión o utilizas un GPS para determinar dónde estás mientras conduces o haces una caminata por el campo, tú (o al menos tu dispositivo con GPS) debes tener en cuenta los efectos de la relatividad general y especial.

El GPS se basa en un conjunto de 24 satélites que orbitan alrededor de la Tierra, y al menos 4 de ellos son visibles desde cualquier punto de la Tierra.

satélite
El GPS lleva un reloj atómico de gran precisión. El receptor GPS detecta las señales de los satélites que se encuentran en la superficie y calcula la posición del usuario basándose en el tiempo que tardan dichas señales en llegar hasta el lugar. Supongamos que queremos saber dónde nos encontramos a una distancia de 15 metros (los dispositivos GPS pueden hacerlo mucho mejor). Como la luz tarda sólo 50 milmillonésimas de segundo en recorrer 15 metros, los relojes de los satélites deben estar sincronizados al menos con esta precisión, y por lo tanto deben tenerse en cuenta los efectos relativistas.

 

Los relojes de los satélites orbitan la Tierra a una velocidad de 14.000 kilómetros por hora y se mueven mucho más rápido que los relojes de la superficie terrestre. Según la teoría de la relatividad de Einstein, los relojes de los satélites funcionan más lentamente que los relojes de la Tierra en aproximadamente 7 millonésimas de segundo por día. (No hemos analizado la teoría especial de la relatividad, que trata de los cambios cuando los objetos se mueven muy rápido, por lo que tendrá que confiar en nuestra palabra en esta parte).

Las órbitas de los satélites se encuentran a 20.000 kilómetros sobre la Tierra, donde la gravedad es unas cuatro veces más débil que en la superficie terrestre. La relatividad general dice que los relojes en órbita deberían marcar unas 45 millonésimas de segundo más rápido que en la Tierra. El efecto neto es que el reloj de un satélite avanza unos 38 microsegundos al día. Si no se tuvieran en cuenta estos efectos relativistas, los errores de navegación empezarían a acumularse y las posiciones se desviarían unos 11 kilómetros en un solo día.

Conceptos clave y resumen

La relatividad general predice que cuanto más fuerte es la gravedad, más lentamente debe transcurrir el tiempo. Los experimentos en la Tierra y con naves espaciales han confirmado esta predicción con una precisión notable. Cuando la luz u otra radiación emerge de un remanente compacto más pequeño, como una enana blanca o una estrella de neutrones, muestra un corrimiento al rojo gravitacional debido a la desaceleración del tiempo.

https://phys.libretexts.org/Bookshelves/Astronomy__Cosmology/Astronomy_1e_(OpenStax)/24%3A_Black_Holes_and_Curved_Spacetime/24.04%3A_Time_in_General_Relativity


Primer  Anterior  12 a 26 de 26  Siguiente   Último  
Tema anterior  Tema siguiente
 
©2024 - Gabitos - Todos los derechos reservados