|
General: ¿CUAL ES EL NEXO DEL TOROIDE CON EL NUMERO DE ORO PHI=1.618033..?
Elegir otro panel de mensajes |
|
|
|
www.youtube.com/watch?v=1KS5XvP_rGI21 Ago. 2013 - 12 min. - Subido por mikethedj4 Video Source - http://www.youtube.com/watch?v=kxuU8jYkA1k Music by Simon Mathewson ... |
|
|
www.youtube.com/watch?v=kxuU8jYkA1k13 Feb. 2013 - 12 min. - Subido por Tom Barnett ... and ideas linking the divine ratio or Phi, and Vortex Based Mathematics. ..... would give you ... |
|
|
|
|
TORUS ENERGY FIELD, THE FLOWER OF LIFE & THE SACRED GEOMETRY OF THE COSMOS
|
|
|
|
Toral coordinates
|
Here is a hint to the homework to parametrize the torus. We keep the angle theta as one of the parameters and let r the distance of a point on the torus to the z-axis. This distance is r=2+cos(phi) if phi is the angle you see on the animated figure below to the left. Note that phi has no relations with the angle phi in spherical coordinates. The blue segment you see has the length r. You can read off from the same (left) picture also that z=sin(phi). To finish the parametrization problem, you have to translate back from cylindrical coordinates (r,theta,z)=(2+cos(phi),theta,sin(phi)) to Cartesian coordinates (x,y,z). Write down your result in the form r(theta,phi)= (x(theta,phi),y(theta,phi), z(theta,phi)). |
|
Changing the angle phi. In this picture the vertical axes is the z-axes. This picture obtained by cutting through the doughnut. For example along the xz-plane. |
|
Changing the angle theta. In this picture the axes are the x and y axes. You look onto the doughnut from above. |
Toral coordinates are corrdinates in space which use the two angles thata and phi as well as the distance to the center circle of the torus. |
|
|
|
|
Hace mas o menos cuatro horas que salí
Y ya Bari tenía la bandeja de entrada saturada..
Y sigue en lo mismo..
No tienes otra cosa que hacer, Bari?
El Ungido
|
|
|
Primer
Anterior
2 a 4 de 19
Siguiente
Último
|
|
|
|
©2024 - Gabitos - Todos los derechos reservados | |
|
|