Página principal  |  Contacto  

Correo electrónico:

Contraseña:

Registrarse ahora!

¿Has olvidado tu contraseña?

FORO LIBREPENSADOR SIN CENSURA
 
Novedades
  Únete ahora
  Panel de mensajes 
  Galería de imágenes 
 Archivos y documentos 
 Encuestas y Test 
  Lista de Participantes
 GENERAL 
 REGLAS DE ESTE FORO LIBRE 
 Panel de quejas 
 CONCORDANCIAS BIBLICAS 
 PANEL DEL ADMINISTRADOR BARILOCHENSE 6999 
 
 
  Herramientas
 
General: ¿CUAL ES EL NEXO DEL TOROIDE CON EL NUMERO DE ORO PHI=1.618033..?
Elegir otro panel de mensajes
Tema anterior  Tema siguiente
Respuesta  Mensaje 1 de 19 en el tema 
De: BARILOCHENSE6999  (Mensaje original) Enviado: 06/11/2014 17:44

Phi Vortex Based Mathematics Torus Array - YouTube

www.youtube.com/watch?v=1KS5XvP_rGI21 Ago. 2013 - 12 min. - Subido por mikethedj4
Video Source - http://www.youtube.com/watch?v=kxuU8jYkA1k Music by Simon Mathewson ...
  • Phi VBM Tori Array - YouTube

    www.youtube.com/watch?v=kxuU8jYkA1k13 Feb. 2013 - 12 min. - Subido por Tom Barnett
    ... and ideas linking the divine ratio or Phi, and Vortex Based Mathematics. ..... would give you ...


  • Primer  Anterior  2 a 4 de 19  Siguiente   Último 
    Respuesta  Mensaje 2 de 19 en el tema 
    De: BARILOCHENSE6999 Enviado: 06/11/2014 18:05
    TORUS ENERGY FIELD, THE FLOWER OF LIFE & THE SACRED GEOMETRY OF THE COSMOS

    Respuesta  Mensaje 3 de 19 en el tema 
    De: BARILOCHENSE6999 Enviado: 06/11/2014 18:18

    Toral coordinates

    Here is a hint to the homework to parametrize the torus. We keep the angle theta as one of the parameters and let r the distance of a point on the torus to the z-axis. This distance is r=2+cos(phi) if phi is the angle you see on the animated figure below to the left. Note that phi has no relations with the angle phi in spherical coordinates. The blue segment you see has the length r. You can read off from the same (left) picture also that z=sin(phi).
    To finish the parametrization problem, you have to translate back from cylindrical coordinates (r,theta,z)=(2+cos(phi),theta,sin(phi)) to Cartesian coordinates (x,y,z).
    Write down your result in the form r(theta,phi)= (x(theta,phi),y(theta,phi), z(theta,phi)).


    Changing the angle phi. In this picture the vertical axes is the z-axes. This picture obtained by cutting through the doughnut. For example along the xz-plane.
    Changing the angle theta. In this picture the axes are the x and y axes. You look onto the doughnut from above.
    Toral coordinates are corrdinates in space which use the two angles thata and phi as well as the distance to the center circle of the torus.

    Respuesta  Mensaje 4 de 19 en el tema 
    De: El UNGIDO Enviado: 06/11/2014 18:25

    Hace mas o menos cuatro  horas que salí

    Y ya Bari tenía la bandeja de entrada saturada..

    Y sigue en lo mismo..

    No tienes otra cosa que hacer, Bari?



    El Ungido




    Primer  Anterior  2 a 4 de 19  Siguiente   Último 
    Tema anterior  Tema siguiente
     
    ©2024 - Gabitos - Todos los derechos reservados