Página principal  |  Contacto  

Correo electrónico:

Contraseña:

Registrarse ahora!

¿Has olvidado tu contraseña?

FORO LIBREPENSADOR SIN CENSURA
 
Novedades
  Únete ahora
  Panel de mensajes 
  Galería de imágenes 
 Archivos y documentos 
 Encuestas y Test 
  Lista de Participantes
 GENERAL 
 REGLAS DE ESTE FORO LIBRE 
 Panel de quejas 
 CONCORDANCIAS BIBLICAS 
 PANEL DEL ADMINISTRADOR BARILOCHENSE 6999 
 
 
  Herramientas
 
General: VENECIA="AGUA VIVA"=$=CAPITALISMO=RELATIVIDAD DE EINSTEIN=3.14=22/7
Elegir otro panel de mensajes
Tema anterior  Tema siguiente
Respuesta  Mensaje 1 de 161 en el tema 
De: BARILOCHENSE6999  (Mensaje original) Enviado: 20/11/2019 17:51
Resultado de imagen para MAQUINA DEL TIEMPO DE VENECIA
 
ISLA SAN GIORGIO (VENECIA)=GEORGE LEMAITRE
 
Resultado de imagen para VENICE SNAKE
 
Resultado de imagen para genesis 22:15,18
 
Resultado de imagen para RIO DE AGUA VIVA ENERGIA
Resultado de imagen para EINSTEIN STONE
Resultado de imagen para einstein pi
Resultado de imagen para einstein pi
Resultado de imagen para bukidnon-monastery-of-transfiguration
 
 
 
Resultado de imagen para stephen hawking HORA DE LA MUERTE
 
15 mar. 2017 - Subido por Derivando
Qué relación hay entre Albert Einstein, los ríos y el famoso número Pi? Hoy en Derivando te lo vamos a explicar ...
 
15 mar. 2017 - Subido por Derivando
Qué relación hay entre Albert Einstein, los ríos y el famoso número Pi? Hoy en Derivando te lo vamos a explicar ...
 
7 dic. 2017 - Subido por Jaume Solsona Villaplana
Einstein, los ríos y el número PI. Jaume Solsona Villaplana. Loading... Unsubscribe from Jaume Solsona ...
 
15 mar. 2017 - Subido por Derivando
El bloguero de YouTube Eduardo Sáenz explica uno de los descubrimientos de Albert Einstein en relación a la ...


Primer  Anterior  147 a 161 de 161  Siguiente   Último  
Respuesta  Mensaje 147 de 161 en el tema 
De: BARILOCHENSE6999 Enviado: 28/10/2024 03:57
THE SOURCE OF LIVING WATER
10 Bible verses about Living Water
What did Jesus mean when He spoke of living water? | GotQuestions.org
JACOBS WELL , WHERE JESUS MET THE SAMARITAN WOMAN | ISRAEL
What did Jesus mean when He spoke of living water? | GotQuestions.org

Respuesta  Mensaje 148 de 161 en el tema 
De: BARILOCHENSE6999 Enviado: 29/10/2024 05:06

H. G. Wells

 
 
 
H. G. Wells

H. G. Wells en 1920
Información personal
Nombre de nacimiento Herbert George Wells Ver y modificar los datos en Wikidata
Nacimiento 21 de septiembre de 1866 Ver y modificar los datos en Wikidata
Bromley (Reino Unido) Ver y modificar los datos en Wikidata
Fallecimiento 13 de agosto de 1946 Ver y modificar los datos en Wikidata (79 años)
Londres (Reino Unido) Ver y modificar los datos en Wikidata
Causa de muerte Tumor hepático Ver y modificar los datos en Wikidata
Nacionalidad Británica
Lengua materna Inglés Ver y modificar los datos en Wikidata
Familia
Padres Joseph Wells Ver y modificar los datos en Wikidata
Sarah Neal Ver y modificar los datos en Wikidata
Cónyuge Isabel Mary Wells
(1891-1894, divorciados)
Amy Catherine Robbins (1895-1927)
Pareja
Hijos George Phillip "G. P." Wells (1901-1985)
Frank Richard Wells (1903-1982)
Anna-Jane Blanco-White (1909-2010)
Anthony West (1914-1987)
Educación
Educación Doctor en Biología Ver y modificar los datos en Wikidata
Educado en
Alumno de Thomas Henry Huxley Ver y modificar los datos en Wikidata
Información profesional
Ocupación Escritorhistoriadorperiodista, idista, escritor de ciencia ficción, novelistasociólogo y guionista Ver y modificar los datos en Wikidata
Área Ciencia ficción, escritor, literatura de no ficción y literatura de ciencia ficción Ver y modificar los datos en Wikidata
Años activo desde 1895
Cargos ocupados Presidente de PEN Club Internacional (1932-1935) Ver y modificar los datos en Wikidata
Movimiento Romanticismo
Seudónimo H. G. Wells, Reginald Bliss, Septimus Browne y Sosthenes Smith Ver y modificar los datos en Wikidata
Géneros Ciencia ficción, biografía y ensayo Ver y modificar los datos en Wikidata
Obras notables
Partido político Partido Laborista Ver y modificar los datos en Wikidata
Miembro de Sociedad Fabiana Ver y modificar los datos en Wikidata
Distinciones
  • Science Fiction and Fantasy Hall of Fame (1997) Ver y modificar los datos en Wikidata
Firma

Herbert George Wells (Bromley; 21 de septiembre de 1866-Londres, 13 de agosto de 1946),1​ más conocido como H. G. Wells, fue un escritor y novelista británico. Wells fue un autor prolífico que escribió en diversos géneros, como ciencia ficción, docenas de novelasrelatos cortos, obras de crítica socialsátirasbiografías y autobiografías. Es recordado por sus novelas de ciencia ficción y es frecuentemente citado como el «padre de la ciencia ficción» junto con Julio Verne y Hugo Gernsback.23

Sin embargo, durante su vida fue reconocido como un crítico social con visión de futuro, incluso profético, que dedicó sus talentos literarios al desarrollo de una visión progresista a escala global. En su faceta de futurista, escribió diversas obras utópicas y previó el advenimiento de avionestanquesviajes espacialesarmas nuclearestelevisión por satélite y algo parecido a internet.4​ En la ciencia ficción imaginó viajes en el tiempoinvasiones alienígenas, invisibilidad e ingeniería biológica. Entre sus obras más destacadas están La máquina del tiempo (1895), La isla del doctor Moreau (1896), El hombre invisible (1897), La guerra de los mundos (1898) y La guerra en el aire (1907). Estuvo nominado en cuatro ocasiones al Premio Nobel de Literatura.5

En un principio Wells estudió biología y sus ideas sobre cuestiones éticas se desenvolvieron en un contexto específica y fundamentalmente darwiniano.6​ También fue siempre un abierto socialista que a menudo (aunque no siempre, como al comienzo de la Primera Guerra Mundial) simpatizó con posturas pacifistas. Sus obras posteriores fueron cada vez más políticas y didácticas, dejando de lado la ciencia ficción, mientras que a veces indicaba en documentos oficiales que su profesión era el periodismo.7​ Novelas como Kipps o La historia de Mr. Polly, que describen la vida de la clase media-baja, llevaron a sugerir que era un digno sucesor de Charles Dickens,8​ aunque Wells retrató numerosos estratos sociales e incluso intentó, en Tono-Bungay (1909), un diagnóstico del conjunto de la sociedad inglesa. Enfermo de diabetes, Wells cofundó en 1934 La Asociación Diabética (hoy conocido como Diabetes UK), de finalidad caritativa. Por sus escritos relacionados con la ciencia, en 1970 se decidió en su honor llamar H. G. Wells a un astroblema lunar ubicado en la cara oculta de la Luna.9

Biografía

[editar]

Nació en la Casa Atlas, High Street número 47, en BromleyKent, el 21 de septiembre de 1866,1​ como el tercer hijo varón de Joseph Wells y su esposa Sarah Neal. La familia pertenecía a la empobrecida clase media-baja de la época. Tenían una tienda nada próspera comprada gracias a una herencia, en la que vendían productos deportivos y loza fina.10

En 1874 el joven Herbert George Wells vivió un hecho que tendría notables repercusiones en su futuro: sufrió un accidente que lo dejó en cama con una pierna quebrada. Para matar el tiempo, empezó a leer libros de la biblioteca local que le traía su padre. Se aficionó a la lectura y comenzó a desear escribir. Ese mismo año entró en una academia comercial llamada Thomas Morley's Commercial Academy, en la que continuó hasta 1880.1

En 1877 su padre sufrió un accidente que le impidió ganarse la vida como lo había hecho hasta entonces. Ello condujo a que Herbert y sus hermanos comenzaran a emplearse en diversos oficios. Fue así como, entre 1881 y 1883, llegó a ser aprendiz de una tienda de textiles llamada Southsea Drapery Emporium: Hyde's, experiencia que se ve reflejada en sus novelas The Wheels of Chance (1896) y Kipps: The Story of a Simple Soul (1905) cuyo protagonista es aprendiz textil.1​ En 1883 se enroló en la escuela de gramática Midhurst de Sussex Occidental como alumno y tutor, donde continuó su avidez por la lectura.10

En 1884 obtuvo una beca para estudiar Biología en el Royal College of Science de Londres, donde tuvo como profesor a Thomas Henry Huxley. Estudió allí hasta 1887. Wells mismo, recordando esa época, habla de haber sufrido hambre constantemente.11​ En este período también ingresa a un club de debate de la escuela llamado Debating Society, donde expresa su interés por transformar la sociedad. Formó parte de los fundadores de The Science School Journal, una revista en la que dio a conocer sus postulados en literatura y en temas sociales. Fue en ella que vio la luz por primera vez su novela La máquina del tiempo, pero con el título original: The Chronic Argonauts (Los Argonautas Crónicos).

H. G. Wells mientras estudiaba en Londres (circa 1890).

Al suspender el examen de geología en 1887, perdió la beca. Por eso no fue sino hasta 1890 que recibió el título de grado en zoología del Programa Externo de la Universidad de Londres. Sin la beca, es decir, sin ingresos, se fue a vivir a casa de una pariente llamada Mary, prima de su padre, donde se interesó por la hija de ésta, Isabel. Entre 1889 y 1890 fue profesor de la Henley House School.1213​ Fue uno de los fundadores de la Royal College of Science Association, siendo su primer presidente en 1909.11

Su relación con Rebecca West, que duró diez años, dio por fruto un hijo, Anthony West, nacido en 1914. Al contraer tuberculosis, abandonó todo para dedicarse a escribir; llegó a completar más de cien obras. Se le considera uno de los precursores de la ciencia ficción y sus primeras obras tuvieron ya por tema la fantasía científica, descripciones proféticas de los triunfos de la tecnología y comentarios sobre los horrores de las guerras del siglo xx: La máquina del tiempo (The Time Machine, 1895), su primera novela, de éxito inmediato, en la que se entrelazaban la ciencia, la aventura y la política; El hombre invisible (The Invisible Man, 1897); La guerra de los mundos (The War of the Worlds, 1898) y Los primeros hombres en la luna (The First Men in the Moon, 1901). Muchas de ellas dieron origen a varias películas.

A la vez se interesó por la realidad sociológica del momento, especialmente por la de las clases medias, defendiendo los derechos de los marginados y luchando contra la hipocresía imperante, que dibujó con cariño, compasión y sentido del humor en novelas como Love and Mr. Lewisham (1900), Kipps, the Story of a Simple Soul (1905) y Mr. Polly (1910), novela de extenso retrato de los personajes en la que, como en Kipps, describe con fina ironía el fracaso de las aspiraciones sociales de sus protagonistas.


Respuesta  Mensaje 149 de 161 en el tema 
De: BARILOCHENSE6999 Enviado: 29/10/2024 05:09
Herbert George Wells (1866-1946) 'The Time Machine' - презентация онлайн

Respuesta  Mensaje 150 de 161 en el tema 
De: BARILOCHENSE6999 Enviado: 31/10/2024 03:07
ScienceFunFacts - A second on Mars is slightly shorter... | Facebook

Respuesta  Mensaje 151 de 161 en el tema 
De: BARILOCHENSE6999 Enviado: 13/11/2024 03:26
Back to the Crypto Future – Premium Crypto Conference Post Regulation:  Another Great Event by FinTech Silicon Valley
Bitcoin back to the future — Steemit
Bitcoin is a Fiasco”: Memes About Cryptocurrency Collapse From The Coin  Shark | The Coin Shark memes en… | Funny memes, Memes hilarious can't stop  laughing, Memes
cryptolul en Twitter: "If you could go back to the 'future' $btc #bitcoin # btc #crypto #cryptocurrency #altcoins #alts #money #rich #finance  https://t.co/pdRtOpRPZI" / Twitter
Abstracting Away The Complexity Of Payments With Blockchain Technology
Bitcoin: The Future of Money?: Amazon.co.uk: Frisby, Dominic:  9781783520770: Books
Adam Ahmed (@trustedprojects) / X
Adam Ahmed (@trustedprojects) / X
Resultado de imagen para JOHN BAPTIST FREEMASONRY
The Great Pyramid and Jesus - Adept Initiates
STUDY 6: The Levites – BIBLE Students DAILY
Tabernacle Schematics 2
Notebook: Introduction To The Tabernacle (3) | Believer's Magazine
The Tribe of Levi
7. The Tabernacle, Priesthood, and Sacrifices (Exodus 20-31, 35-40;  Leviticus 1-17; Numbers 6-10). Moses Bible Study
Pin on RIsas de Instagram
John DeLorean: del éxito del coche de 'Regreso al futuro' al escándalo por  estafa y narcotráfico
How "Back to the Future" Made the DeLorean Car Famous | American Collectors  Insurance
John DeLorean: Un magnate de leyenda (2021) - Filmaffinity
SYD - ???????????????? En el día de “Volver al futuro” recordamos a John DeLorean,  quien llegó a ser el ejecutivo más joven de General Motors y cuya fábrica  DMC sólo lanzó un
AutoxpressMx | John DeLorean fue un ingeniero y ejecutivo de la industria  automotriz que previamente trabajó en General Motors. Creador del famoso...  | Instagram

Respuesta  Mensaje 152 de 161 en el tema 
De: BARILOCHENSE6999 Enviado: 13/11/2024 03:51
Science in the Bible: The Water Cycle
What is Water Cycle? | Science

Respuesta  Mensaje 153 de 161 en el tema 
De: BARILOCHENSE6999 Enviado: 25/11/2024 19:35
Cloud Condensation Stock Illustrations – 8,421 Cloud Condensation Stock  Illustrations, Vectors & Clipart - Dreamstime
Daniel 7:13 In my vision in the night I continued to watch, and I saw One  like the Son of Man coming with the clouds of heaven. He approached the  Ancient of
Daniel 7:13 RVA - Miraba yo en la visión de la noche, y he aquí

Respuesta  Mensaje 154 de 161 en el tema 
De: BARILOCHENSE6999 Enviado: 01/12/2024 16:42
Budismo y física (II) | Centro Budista de Valencia

Respuesta  Mensaje 155 de 161 en el tema 
De: BARILOCHENSE6999 Enviado: 02/12/2024 13:57
 

The realm of relativistic hydrodynamics

Modeling relativistic fluids and the phenomena associated with them – from supernovae and jets to merging neutron stars

AN ARTICLE BY JOSÉ ANTONIO FONT RODA

Hydrodynamics or fluid dynamics is the study of the behaviour of fluids such as water and air – water flowing down a canal, but also, for instance, air flowing around an airplane fuselage. The term relativistic hydrodynamics (or relativistic fluid dynamics) refers to the study of flows in the arena of special or of general relativity. Special relativity will come into play when the velocities attained by certain portions of the fluid or by the fluid as a whole approach the speed of light. General relativity comes into play when there are sufficiently strong gravitational fields – either because the fluid’s environment features such fields, or because the mass and energy of the fluid are sufficient to generate their own strong gravity.

The flows we are accustomed to in daily life are a far cry from meeting either of the two conditions – even the flows encountered by a supersonic aircraft amount to no more than a fraction of a percent of the speed of light, and within the whole solar system, there are no really strong sources of gravity altogether. However, such extreme conditions, where hydrodynamics becomes relativistic, are routinely encountered by astronomers observing some of the most violent events in the cosmos.

In fact, almost any phenomenon astronomers observe in the context of what is suitably called high-energy astrophysics requires a relativistic description. In order to understand the dynamics and evolution of such phenomena (we’ll get around to some impressive examples, below), astrophysicists usually resort to mathematical models which incorporate relativistic hydrodynamics as a key building block.

The challenge of relativistic hydrodynamics

The equations describing relativistic hydrodynamics are remarkably complex. In addition to Einstein’s description of gravity, space and time – which entails equations that are already quite complex all by themselves – they must also incorporate proper models for the properties and behaviour of matter, for instance how it flows or reacts to external pressure. For very idealised situations it might be possible to do the calculations by hand, writing down explicit formulae describing the dynamics. An example would be the collapse of a shell that is perfectly spherical (and thus perfectly symmetrical) and made of matter which has very simple properties, dust, for instance, which has no internal pressure to resist gravity, and which thus collapses readily to form a black hole. But for more realistic matter models, which are necessarily more complicated and without any assumption of symmetry, the only option left is to perform computer simulations, in other words: to use the techniques of numerical relativity.

Such simulations have become a powerful way to improve our understanding of the dynamics and evolution of the different kinds of relativistic flows encountered in physics. In particular, this is true for astrophysical systems which, given their size and mass, do not lend themselves to laboratory experimentation. Even so, in order to produce realistic simulations, it is necessary to push current computer technology and programming to their very limits. Indeed, progress in the field is closely tied to advances in the capabilites (such as speed and memory) of (super-)computers on the one hand, and to improvements in the design of ever more efficient and accurate simulation algorithms on the other.

Let us now take a quick tour of the astrophysical realm of relativistic hydrodynamics.

Collapse

We start with a paradigmatic example for the necessity of relativistic hydrodynamics: the collapse of the core of a massive star in the course of a supernova explosion, leading to the formation of extremely compact objects – neutron stars or possibly even black holes.

As the core of the star collapses, it reaches enormous densities – at peak values, matter is so compressed that a tablespoon full would have a mass of more than a hundred million tons – and the dynamic evolution is highly interesting, from the core literally bouncing back as the properties of matter change to the formation of travelling disturbances (shocks). During its fall, the matter can reach velocities up to 40 percent of the speed of light. For the collapse itself, Newtonian gravity and Einstein’s general relativity give markedly different predictions – in Einstein’s theory, gravity in the central regions is up to 30 percent stronger. This makes a relativistic description of hydrodynamics and gravity absolutely essential, especially in the case of a rotating inner core, where there is a delicate balance between the centrifugal forces associated with rotation and gravity’s inward pull. The following animation is based on a relativistic simulation of a collapsing stellar core:

star_collapse

[Image: AEI/ZIB/LSU. Animation size 942kB; please allow time for loading.]

Download movie version (mpeg, 19MB) here

The colors encode the different densities; during the animation, you can see the formation of a red-orange region that is the neutron star. The red and green patterns projected onto an imaginary plane beneath the newly formed star towards the end of the animation represent the gravitational waves produced during the collapse.

As a result of the core bouncing back, the outer layers of the star are ejected. This starts off the supernova explosion with its massive increase in brightness that allows astronomers here on earth to observe these phenomena even when they happen in other galaxies! The debris of the explosion makes for beautiful astronomical objects such as the supernova remnant N63a in one of our neighbouring galaxies, the Large Magellanic Cloud:

 

Supernova remnant N63a

[Image: NASA/ESA/HEIC/Hubble Heritage Team (STScI/AURA)]

Core collapse is not the only way to make a supernova. Alternatively, we might be dealing with a White dwarf star – the remnant of a low-mass star like our Sun – capturing matter from an orbiting companion. Once a critical mass is reached, the White Dwarf will disintegrate in a thermonuclear explosion, leading to what astronomers call a supernova of type Ia.

 

Relativistic jets

Another very common phenomenon where relativistic hydrodynamics comes into play is the formation of so-called jets – situations in which matter flows onto a compact body, and some of the matter being flung away in a pair of tightly focussed beams! If this happens around a compact object of a few or a few dozen solar masses, we have what is called a microquasar; if the central object is much more massive, with a couple of millions or even billions of solar masses, we are dealing with an active galactic nucleus. The following image shows an example, the radio galaxy 3C272.1. In the close-up, one can clearly see the two tight beams emitted in opposite directions from the central core:

 

nrao_ngc4374

[Image: NRAO/AUI/NSF]

In fact, in the jets of many extra-galactic radio sources associated with active galactic nuclei, it seems as if matter were propagating faster than the speed of light! While this is just an optical illusion caused by matter moving near the speed of light, and almost directly towards or directly away from the observer, for this optical effect to occur, the jets’ flow velocities must be at least as large as 99% of the speed of light . One example, a blob of plasma (left) moving away from the core of an object called a blazar (an active galactic nucleus whose approaching jet is seen almost exactly head-on), is shown in the sequence below:

 

 

nrao_0827_243

[Image: Piner et al., NRAO/AUI/NSF]

The object is the blazar 0826+243, and the plasma blob appears to move at 25 times the speed of light – while, in reality, it “only” moves at more than 99.9% of lightspeed.

 

Astronomers have made many high-resolution radio observations of jets, revealing a wealth of form and structure. Using the equations of relativistic hydrodynamics, together with the equations governing the dynamics of magnetic fields and the interactions of such fields with matter (“relativistic magneto-hydrodynamics”), it is possible to explain how these structures come about. In recent years, researchers have managed to perform quite detailed simulations of relativistic jets. An example can be seen in the animation below, which shows the evolution of a powerful jet as it propagates through the intergalactic medium:

 

jetsim

[Image: Max Planck Institute for Astrophysics/L. Scheck et al. in Mon. Not. R. Astron. Soc., 331, 615-634, (2002).]

For the main structures observed in the simulations – for instance propagating discontinuities in the beam, and a hot spot at the head of the jet – astronomers can find counterparts as they observe extragalactic radio sources.

 

Gamma ray bursts

A relativistic description of gravity and of the dynamics of matter is also necessary in scenarios involving the gravitational collapse of massive stars (with masses of about 30 solar masses and higher) to form black holes, or during the last phases of the coalescence of two neutron stars which orbit each other. These two explosive events are believed to be the mechanisms responsible for the so-called gamma-ray bursts, the most luminous events in the universe short of the big bang itself. In particular, stellar collapse is considered the mechanism behind what are called “long” gamma-ray bursts, the bursts lasting for about 20 seconds, while neutron star mergers are regarded as responsible for “short” gamma-ray bursts, with a duration of only about 0.2 seconds. The following animation shows on the left a false colour image of the gamma rays received from the different regions of the whole sky, using data collected with NASA’s Compton Gamma Ray Observatory. As you can see, there is a bright flash in the top half which, at one time, is so bright that it dominates the whole of the image. This is one particular gamma ray burst; the curve on the right traces how the burst’s brightness changes over time:

 

grb_animation

[Image: NASA’s “Imagine the Universe!” website]

Since the gamma-ray bursts take place at a distance of billions of light years from Earth, the fact that, even at that distance, they are visible as extremely bright phenomena implies that huge amounts of energy must be released – comparable to converting the mass of our sun completely into gamma-rays over the course of a few seconds within a region of space no more than a couple of thousand kilometres across. There is general agreement, supported by observational evidence, that the gamma rays are not emitted in all directions (such as the emissions of a light bulb), but that they are focussed (such as the light from the beam of a lighthouse, which you only see if it is pointed directly at you). The focussing accounts for some part of their perceived brightness, and it would mean we observe only those gamma ray bursts whose light happens to be emitted exactly in the direction of the Earth. The mechanism for this focussing would be, once more, matter moving at relativistic speeds to form some kind of jet. Theoretical models estimate that the matter responsible for the gamma-ray burst emission must be travelling at more than 99.99% of the speed of light.

 

Simulations of how this movement comes about and causes an event as spectacular as a gamma ray burst are, once more, the province of relativistic hydrodynamics. For short gamma ray bursts, these simulations need to track the merger of two orbiting neutron stars. The following animation illustrates one such simulation, where each of the two neutron stars has 1.4 times as much mass as our sun:

 

ns_merger

[Image: M. Shibata, Tokyo University. Animation size 651kB; please allow time for loading.]

Download movie version (mpeg, 6.6MB) here.

 

The final stage of the merger which is shown here would take about 3 thousandth of a second from start to finish. In the animation, the colors encode different densities, while the velocity of matter in different regions is represented by little arrows.

There is an additional aspect to all these astrophysical scenarios: The presence of both relativistic flows and massive yet compact objects turns them into prime candidates for the production of gravitational waves! The possibility of directly detecting these elusive ripples in the curvature of spacetime, and of extracting a wealth of new information from the data, is one of the driving motivations of present-day research in relativistic astrophysics – and faithful modelling of these situations using relativistic hydrodynamics is a key ingredient of successful gravitational wave astronomy!

Man-made relativistic flows

While natural flow processes here on Earth are a far cry from reaching relativistic speeds, there are indeed artificial – man-made – relativistic flows, namely in particle accelerators. One example is the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory in New York, which began operation in 2000, another the Large Hadron Collider (LHC) at CERN near Geneva, which is currently under construction.

In these facilities heavy ions – heavy atomic nuclei, for instance those of gold or lead, stripped of their electrons – are accelerated to ultra-relativistic velocities and made to collide with one another. At RHIC, the projectiles travel at typical speeds of 99.995% the speed of light – at such speed, the relativistic mass of a moving object is more than a hundred times larger than its mass at rest! After the LHC has started its operations in late 2007, there will be the possibility for experiments in which the mass – and energy – will be increased by almost a factor of one hundred.

Heavy-ion collision experiments provide a unique way to compress and heat up nuclear matter, and to prove the existence of an exotic state of ultra-compressed nuclear matter, called a quark-gluon-plasma, which is predicted by the theory of strong nuclear interactions (quantum chromodynamics). They recreate, within a tiny region of space, conditions similar to those under which matter existed in the early universe, fractions of a second after the big bang.

Physicists use several techniques do describe what happens in these collisions. A number of results can be obtained by treating all the particles involved as separate objects. But for other calculations, it is much more useful to treat the dense, strongly interacting matter formed in the collision as a continuous fluid. Of course, given the energies involved, we need to take into account the effects of special relativity. As an example, the following animation shows results of a simulation of a jet – a particle stream produced in such collisions – propagating through a simplified version of such a fluid, producing a Mach cone similar to the sonic boom of a supersonic aircraft:

 

mach_cone

[Animation B. Betz, Goethe-Universität Frankfurt.]

Numerical simulations with relativistic fluid models have proved to be of great help in understanding certain aspects of these highly energetic heavy-ion collisions.

 

Further Information

Relativistic background information for this Spotlight topic can be found in Elementary Einstein, in particular in the chapter Black Holes & Co..

Further related Spotlights on relativity can be found in the category Black Holes & Co..

Further information about some of the animations displayed in this text:

Further simulations from Albert Einstein Institute’s numerical relativity group can be found on the numrel@aei homepage.

A variety of other simulations of merging neutron stars are accessible on Masaru Shibata’s Homepage.

NASA’s Imagine the universe! website has a wealth of accessible material about all areas of astrophysics.

Presentations by Barbara Betz containing further simulations can be downloaded from the Helmholtz Research School Presentation page.

https://www.einstein-online.info/en/spotlight/hydrodynamics_realm/

Respuesta  Mensaje 156 de 161 en el tema 
De: BARILOCHENSE6999 Enviado: 02/12/2024 13:59
 
 
19:34
 
Does space "flow" like a river? There's an analogy in General Relativity ... Why The Theory of Relativity Doesn't Add Up (In Einstein's Own Words).

Respuesta  Mensaje 157 de 161 en el tema 
De: BARILOCHENSE6999 Enviado: 11/12/2024 04:20
The Role Of Banks : Channels for Your Financial Flow | Money As Water

Respuesta  Mensaje 4 de 4 en el tema 
De: BARILOCHENSE6999 Enviado: 10/12/2024 23:50
Money Flows To Me Like Rushing Water - Short Affirmations On Loop - Attract  Abundance

Respuesta  Mensaje 158 de 161 en el tema 
De: BARILOCHENSE6999 Enviado: 12/12/2024 16:04
Money Flows To Me Like Rushing Water - Short Affirmations On Loop - Attract  Abundance

Respuesta  Mensaje 4 de 4 en el tema 
De: BARILOCHENSE6999 Enviado: 12/12/2024 12:28
Law of Attraction Money Affirmation - Money Flows into Your Life

Respuesta  Mensaje 159 de 161 en el tema 
De: BARILOCHENSE6999 Enviado: 13/12/2024 04:00
फ़ोटो के बारे में कोई जानकारी नहीं दी गई है.

Respuesta  Mensaje 160 de 161 en el tema 
De: BARILOCHENSE6999 Enviado: 13/12/2024 04:24
Riparianism – Surface Water Solutions: Consulting and Software Training

Respuesta  Mensaje 161 de 161 en el tema 
De: BARILOCHENSE6999 Enviado: 14/01/2025 16:28

Earth from Space – Arc de Triomphe, Paris

By Marc Boucher
Status Report
May 13, 2022
Filed under 
Earth from Space – Arc de Triomphe, Paris
Arc de Triomphe, Paris.
ESA

This striking, high-resolution image of the Arc de Triomphe, in Paris, was captured by Planet SkySat – a fleet of satellites that have just joined ESA’s Third Party Mission Programme in April 2022.
The Arc de Triomphe, or in full Arc de Triomphe de l’Étoile, is an iconic symbol of France and one of the world’s best-known commemorative monuments. The triumphal arch was commissioned by Napoleon I in 1806 to celebrate the military achievements of the French armies. Construction of the arch began the following year, on 15 August (Napoleon’s birthday).

The arch stands at the centre of the Place Charles de Gaulle, the meeting point of 12 grand avenues which form a star (or étoile), which is why it is also referred to as the Arch of Triumph of the Star. The arch is 50 m high and 45 m wide.

The names of all French victories and generals are inscribed on the arch’s inner and outer surfaces, while the Tomb of the Unknown Soldier from World War I lies beneath its vault. The tomb’s flame is rekindled every evening as a symbol of the enduring nature of the commemoration and respect shown to those who have fallen in the name of France.

The Arc de Triomphe’s location at the Place Charles de Gaulle places it at the heart of the capital and the western terminus of the Avenue des Champs-Élysées (visible in the bottom-right of the image). Often referred to as the ‘most beautiful avenue in the world’, the Champs-Élysées is known for its theatres, cafés and luxury shops, as the finish of the Tour de France cycling race, as well as for its annual Bastille Day military parade.

 

This image, captured on 9 April 2022, was provided by Planet SkySat – a fleet of 21 very high-resolution satellites capable of collecting images multiple times during the day. SkySat’s satellite imagery, with 50 cm spatial resolution, is high enough to focus on areas of great interest, identifying objects such as vehicles and shipping containers.

SkySat data, along with PlanetScope (both owned and operated by Planet Labs), serve numerous commercial and governmental applications. These data are now available through ESA’s Third Party Mission programme – enabling researchers, scientists and companies from around the world the ability to access Planet’s high-frequency, high-resolution satellite data for non-commercial use.

Within this programme, Planet joins more than 50 other missions to add near-daily PlanetScope imagery, 50 cm SkySat imagery, and RapidEye archive data to this global network.

Peggy Fischer, Mission Manager for ESA’s Third Party Missions, commented, “We are very pleased to welcome PlanetScope and SkySat to ESA’s Third Party Missions portfolio and to begin the distribution of the Planet data through the ESA Earthnet Programme.

“The high-resolution and high-frequency imagery from these satellite constellations will provide an invaluable resource for the European R&D and applications community, greatly benefiting research and business opportunities across a wide range of sectors.”

To find out more on how to apply to the Earthnet Programme and get started with Planet data, click here.

– Download the full high-resolution image.

https://spaceref.com/earth/earth-from-space-arc-de-triomphe-paris/

Respuesta Ocultar Mensaje Eliminar Mensaje  Mensaje 3 de 4 en el tema 
De: BARILOCHENSE6999 Enviado: 13/01/2025 15:53
Foundation stone. On August 15, 1806, Emperor Napoleon I's birthday, the foundation stone of the building was laid at a depth of eight meters, between the two southern pillars.

Respuesta Ocultar Mensaje Eliminar Mensaje  Mensaje 4 de 4 en el tema 
De: BARILOCHENSE6999 Enviado: 14/01/2025 12:48

Enviado: 21/10/2024 10:30
Longview HS Lobo Choir group takes final bow after week in Paris, France
My Favorite Top 12 Experiences in Europe — Dream Destinations
16 ideas de GEOGRAFÍA URBANA | urbano, geografía, ciudades

Respuesta  Mensaje 22 de 22 en el tema 
De: BARILOCHENSE6999 Enviado: 14/01/2025 11:38
Discover the majestic Place de la Concorde in Paris - French Moments
A Guide to the Historical Axis of Paris - French Moments
Paris - La Tour Eiffel - La Madeleine - L'Arc de Triomphe - Les Invali – JH  Postcards
Rue de Rivoli, Arc de Triomphe, Madeleine...Le Paris de Napoléon
Arc de Triomphe de l'Étoile in Paris - fentens Papermodels
 
Arc de Triomphe in Paris
Arc de Triomphe in Paris
Church of Sainte-Marie-Madeleine in Paris
The Great Pyramid and Jesus - Adept Initiates
Historical Axis at Concorde © French Moments


Primer  Anterior  147 a 161 de 161  Siguiente   Último  
Tema anterior  Tema siguiente
 
©2025 - Gabitos - Todos los derechos reservados