|
General: MARY MAGDALENE EINSTEIN/STEIN/STONE/PIEDRA TRAVEL THROUGH TIME
Elegir otro panel de mensajes |
|
|
Radio Data Using Vikings on Mars Further Confirm Einstein Theory
By Credit...The New York Times ArchivesEstimated Delay of Waves
Results of the experiment were reported at a news conference held at the Jet Propulsion Laboratory in Pasadena, Calif. The Viking 1 and 2 spacecraft are being controlled there.
The experiment was conducted last Nov. 25, Thanksgiving Day, at the time of solar conjunction. At that time, Mars moved behind the sun in relation to Earth, causing a total blackout of communications between the Vikings and Earth.
But just before and after the blackout, radio signals were transmitted from antennaes at Goldstone, Calif., and Canberra, Australia, to both of the Viking orbiters and landers and then from the spacecraft back to Earth. The round‐trip travel times of the signals were carefully clocked. The transmissions were repeated frequently to check for accuracy.
The results, Dr. Shapiro said, were “in very good agreement with the theory of general relativity.”
Not that he expected to prove Einstein wrong. Previous tests using spacecraft communications systems tended to confirm the theory, but the Viking test is considered twice as accurate, or more, than the previous ones.
In a telephone interview after the conference, Dr. Shapiro said:
“I would have been very surprised Einstein was wrong. But one just can't take theories for granted. Physics is an experimental approach to nature. Einstein came along to explain deviations in Newton's theory of gravity. And at some level of probing we may find Einstein's theory will break down and no longer be a totally adequate theory of the way nature behaves.”
Possible Seismic Event on Marshttps://www.nytimes.com/1977/01/07/archives/radio-data-using-vikings-on-mars-further-confirm-einstein-theory.html |
|
|
|
|
|
|
Viking Project tests general relativity, November 25, 1976
The Viking spacecraft arrived at Mars in the summer of 1976 and passed through superior conjunction on November 25, as Mars passed directly behind the Sun as seen from Earth. This provided researchers the opportunity to use the spacecraft in an experiment to test general relativity.
This image shows the surface of Mars looking across the Viking 2 Lander. (Source: NASA)
After completing the primary missions, the Viking continuation mission objectives included a radio science solar conjunction relativity experiment. Scientists began an experiment that used the landers and orbiters as transponders, sending radio signals to the lander on Mars and instructing the lander to the return signals. The round-trip travel times of the radio signals going from Earth to the Viking landers and orbiters were measured.
Using dual-band, one-way ranging allowed estimation of the contribution of the solar-corona plasma to the echo delays obtained from ranging to the spacecraft.
The data confirmed the Shapiro time delay effect, which states that radar signals passing near a massive object take slightly longer to travel to a target and longer to return than they would if the mass of the object were not present.
A report, “Viking relativity experiment: verification of signal retardation by solar gravity” published in 1979 by researchers at MIT and the Jet Propulsion Laboratory, analyzed 14 months of data obtained from radio ranging to Viking to verify the prediction of the general theory of relativity.
Published by Albert Einstein in 1916, the general theory of relativity predicted that the round-trip or echo delays of light signals traveling between the Earth and Mars would be increased by the direct effect of solar gravity. The theory included gravitational time dilation, where time passes differently in regions of different gravitational potential.
NASA has continued to test general relativity, most recently with the Cassini space probe (see a NASA artist rending of its testing at right) and Gravity Probe B, which also confirmed the theory.
Related articles:
For more moments in tech history, see this blog. EDN strives to be historically accurate with these postings. Should you see an error, please notify us.
Editor’s note: This article was originally posted on November 25, 2013 and edited on November 25, 2019.
https://www.edn.com/viking-project-tests-general-relativity-november-25-1976/ |
|
|
|
Foundation stone. On August 15, 1806, Emperor Napoleon I's birthday, the foundation stone of the building was laid at a depth of eight meters, between the two southern pillars. |
|
|
|
Earth from Space – Arc de Triomphe, Paris
Status Report
May 13, 2022
Arc de Triomphe, Paris.
ESA
This striking, high-resolution image of the Arc de Triomphe, in Paris, was captured by Planet SkySat – a fleet of satellites that have just joined ESA’s Third Party Mission Programme in April 2022. The Arc de Triomphe, or in full Arc de Triomphe de l’Étoile, is an iconic symbol of France and one of the world’s best-known commemorative monuments. The triumphal arch was commissioned by Napoleon I in 1806 to celebrate the military achievements of the French armies. Construction of the arch began the following year, on 15 August (Napoleon’s birthday).
The arch stands at the centre of the Place Charles de Gaulle, the meeting point of 12 grand avenues which form a star (or étoile), which is why it is also referred to as the Arch of Triumph of the Star. The arch is 50 m high and 45 m wide.
The names of all French victories and generals are inscribed on the arch’s inner and outer surfaces, while the Tomb of the Unknown Soldier from World War I lies beneath its vault. The tomb’s flame is rekindled every evening as a symbol of the enduring nature of the commemoration and respect shown to those who have fallen in the name of France.
The Arc de Triomphe’s location at the Place Charles de Gaulle places it at the heart of the capital and the western terminus of the Avenue des Champs-Élysées (visible in the bottom-right of the image). Often referred to as the ‘most beautiful avenue in the world’, the Champs-Élysées is known for its theatres, cafés and luxury shops, as the finish of the Tour de France cycling race, as well as for its annual Bastille Day military parade.
This image, captured on 9 April 2022, was provided by Planet SkySat – a fleet of 21 very high-resolution satellites capable of collecting images multiple times during the day. SkySat’s satellite imagery, with 50 cm spatial resolution, is high enough to focus on areas of great interest, identifying objects such as vehicles and shipping containers.
SkySat data, along with PlanetScope (both owned and operated by Planet Labs), serve numerous commercial and governmental applications. These data are now available through ESA’s Third Party Mission programme – enabling researchers, scientists and companies from around the world the ability to access Planet’s high-frequency, high-resolution satellite data for non-commercial use.
Within this programme, Planet joins more than 50 other missions to add near-daily PlanetScope imagery, 50 cm SkySat imagery, and RapidEye archive data to this global network.
Peggy Fischer, Mission Manager for ESA’s Third Party Missions, commented, “We are very pleased to welcome PlanetScope and SkySat to ESA’s Third Party Missions portfolio and to begin the distribution of the Planet data through the ESA Earthnet Programme.
“The high-resolution and high-frequency imagery from these satellite constellations will provide an invaluable resource for the European R&D and applications community, greatly benefiting research and business opportunities across a wide range of sectors.”
To find out more on how to apply to the Earthnet Programme and get started with Planet data, click here.
– Download the full high-resolution image.
https://spaceref.com/earth/earth-from-space-arc-de-triomphe-paris/ |
|
|
|
The Arc de Triomphe, or in full Arc de Triomphe de l’Étoile, is an iconic symbol of France and one of the world’s best-known commemorative monuments. The triumphal arch was commissioned by Napoleon I in 1806 to celebrate the military achievements of the French armies. Construction of the arch began the following year, on 15 August (Napoleon’s birthday).
|
|
|
|
|
|
|
|
-
-
Illustration on the base of the obelisk, showing how it was raised into place in 1836
-
Hieroglyphs on the obelisk.
-
Hieroglyphs on the upper obelisk. The Pharaoh on his throne is portrayed at the top
The centrepiece of the Place de la Concorde is an ancient Egyptian obelisk decorated with hieroglyphics exalting the reign of the pharaoh Ramesses II. It is one of two which the Egyptian government gave to the French in the 19th century. The other one stayed in Egypt, too difficult and heavy to move to France with the technology at that time. On 26 September 1981 President François Mitterrand formally returned the title of the second obelisk to Egypt.[16]
The obelisk once marked the entrance to the Luxor Temple. The wali of Egypt, or hereditary governor, Muhammad Ali Pasha, offered the 3,300-year-old Luxor Obelisk as a diplomatic gift to France in 1829. It arrived in Paris on 21 December 1833. Three years later, it was hoisted into place, on top of the pedestal which originally supported the statue of Louis XV, destroyed during the Revolution. The raising of the column was a major feat of engineering, depicted by illustrations on the base of the monument. King Louis Philippe dedicated the obelisk on 25 October 1836.[17]
The obelisk, a yellow granite column, rises 23 metres (75 ft) high, including the base, and weighs over 250 tonnes (280 short tons). Given the technical limitations of the day, transporting it was no easy feat – on the pedestal are drawn diagrams explaining the machinery that was used for the transportation. The government of France added a gold-leafed pyramidal cap to the top of the obelisk in 1998, replacing the missing original, believed stolen in the 6th century BC.[18]
|
|
|
|
|
|
Primer
Anterior
35 a 49 de 49
Siguiente
Último
|
|
|
|
©2025 - Gabitos - Todos los derechos reservados | |
|
|