Pàgina principal  |  Contacte  

Correu electrònic:

Contrasenya:

Inscriviu-vos ara!

Heu oblidat la vostra contrasenya?

FORO LIBREPENSADOR SIN CENSURA
 
Novetats
  Afegeix-te ara
  Plafó de missatges 
  Galeria d’imatges 
 Arxius i documents 
 Enquestes i Tests 
  Llistat de Participants
 GENERAL 
 REGLAS DE ESTE FORO LIBRE 
 Panel de quejas 
 CONCORDANCIAS BIBLICAS 
 PANEL DEL ADMINISTRADOR BARILOCHENSE 6999 
 
 
  Eines
 
General: MAGIC HEXAGON
Triar un altre plafó de missatges
Tema anterior  Tema següent
Resposta  Missatge 1 de 2 del tema 
De: BARILOCHENSE6999  (Missatge original) Enviat: 19/03/2021 22:53

Magic Hexagon

DOWNLOAD Mathematica Notebook MagicHexagon

A magic hexagon of order n is an arrangement of close-packed hexagons containing the numbers 1, 2, ..., H_(n-1), where H_n is the nth hex number such that the numbers along each straight line add up to the same sum. (Here, the hex numbers are i.e., 1, 7, 19, 37, 61, 91, 127, ...; OEIS A003215). In the above magic hexagon of order n=3, each line (those of lengths 3, 4, and 5) adds up to 38.

It was discovered independently by Ernst von Haselberg in 1887 (Bauch 1990, Hemme 1990), W. Radcliffe in 1895 (Tapson 1987, Hemme 1990, Heinz), H. Lulli (Hendricks, Heinz), Martin Kühl in 1940 (Gardner 1963, 1984; Honsberger 1973), Clifford W. Adams, who worked on the problem from 1910 to 1957 (Gardner 1963, 1984; Honsberger 1973), and Vickers (1958; Trigg 1964).

This problem and the solution have a long history. Adams came across the problem in 1910. He worked on the problem by trial and error and after many years arrived at the solution which he transmitted to M. Gardner, Gardner sent Adams' magic hexagon to Charles W. Trigg, who by mathematical analysis found that it was unique disregarding rotations and reflections (Gardner 1984, p. 24). Adams' result and Trigg's work were written up by Gardner (1963). Trigg (1964) did further research and summarized known results and the history of the problem.

Trigg showed that the magic constant for an order n hexagon would be

 (9(n^4-2n^3+2n^2-n)+2)/(2(2n-1)),

the first few of which are 1, 28/3, 38, 703/7, 1891/9, 4186/11, ... (OEIS A097361 and A097362), which requires 5/(2n-1) to be an integer for a solution to exist. But this is an integer for only n=1 (the trivial case of a single hexagon) and Adams's n=3 (Gardner 1984, p. 24).



Primer  Anterior  2 a 2 de 2  Següent   Darrer  
Resposta  Missatge 2 de 2 del tema 
De: BARILOCHENSE6999 Enviat: 30/03/2025 16:56
No hay ninguna descripción de la foto disponible.
 
The Egyptian Royal Cubit and the Foot are units of measure connected by the fraction 12/7 = 1.714285... (or 5/7 = .714285...)
The Hexagon is said to be the symbol of creation containing 7 points (middle and 6).
We naturally mark 12 points on a circle (time) by dividing 360 by 30.
When we consider 147 as the ancient egyptian sacred number it's no wonder that length was used as the original Royal Cubit length of the Sphinx or 252 feet. Some math:
252-147 = 105
147/105 = 1.4
252/105 = 2.4
 
 
https://www.facebook.com/photo.php?fbid=616622461722982&id=159074557477777&set=a.410818145636749


 
©2025 - Gabitos - Tots els drets reservats