Home  |  Contact  

Email:

Password:

Sign Up Now!

Forgot your password?

Secreto Masonico
 
What’s New
  Join Now
  Message Board 
  Image Gallery 
 Files and Documents 
 Polls and Test 
  Member List
 EL SECRETO DE LA INICIACIÓN 
 Procesos Secretos del Alma 
 Estructura Secreta del Ritual Masónico 
 Los extraños Ritos de Sangre 
 Cámara de Reflexiones 
 
 
  Tools
 
General: SERIE DE FIBONACCI Y SU NEXO CON EL NUMERO 11
Choose another message board
Previous subject  Next subject
Reply  Message 1 of 1 on the subject 
From: BARILOCHENSE6999  (Original message) Sent: 25/04/2019 16:05

6. La sucesión de Fibonacci está llena de anécdotas matemáticas que harán las delicias de los más curiosos. Por ejemplo: si sumamos 10 números consecutivos de la serie elegidos al azar, el resultado siempre es múltiplo de 11.

21+34+55+89+144+233+377+610+897+1.597=4.147=11x377

89+144+233+377+610+987+1.597+2.584+4.181+6.765=17.567=11x1.597

De hecho, los resultados son iguales a multiplicar por 11 el séptimo número elegido, en estos dos casos, 377 y 1.597

7. Se ha estudiado mucho la sucesión de Fibonacci y el conocimiento sobre ella es amplio, pero no completo. De hecho, hay una conjetura aún sin demostrar: que la sucesión de Fibonacci contiene infinitos números primos. A día de hoy, nadie sabe si esto es verdadero o falso. Por si algún matemático entre los lectores se anima a buscar una respuesta…

8. Se conoce como estrella pentagonal a la que está inscrita en un pentágono regular, y también está relacionada con la proporción áurea: el segmento D que forma la diagonal del pentágono (o un lado de la estrella), al dividirlo entre un lado del pentágono C, da como resultado la proporción áurea. Esta estrella también ha sido profusamente representada, tiene mucho simbolismo y es incluso la base de muchos juegos populares, ya que es una de las formas de tablero más antiguas que se conocen.

9. Si está usted a punto de lanzarse en la búsqueda de la proporción áurea en todo lo que le rodea, aquí tiene un modo de hacerlo: construya un compás áureo. Es sencillo. Recorte dos tiras de cartón o plástico de 34 centímetros de largo, dos de ancho y terminadas en punta. Únalas a 13 centímetros de una de las puntas con un encuadernador, imitando la estructura de unas tijeras. Al moverlas obtendrá dos triángulos de lados iguales que miden 21 y 13 centímetros respectivamente. Al ser dos términos consecutivos de la sucesión de Fibonacci, su cociente será próximo al número áureo. Para ver si dos segmentos guardan esa proporción, solo habrá que abrir el extremo pequeño hasta que coincida con el segmento menor y, sin variar la posición del compás, poner el otro extremo en el segmento grande. Si coincide, ambos segmentos respetan la proporción áurea.



First  Previous  Without answer  Next   Last  

 
©2025 - Gabitos - All rights reserved