Home  |  Contact  

Email:

Password:

Sign Up Now!

Forgot your password?

Secreto Masonico
 
What’s New
  Join Now
  Message Board 
  Image Gallery 
 Files and Documents 
 Polls and Test 
  Member List
 EL SECRETO DE LA INICIACIÓN 
 Procesos Secretos del Alma 
 Estructura Secreta del Ritual Masónico 
 Los extraños Ritos de Sangre 
 Cámara de Reflexiones 
 
 
  Tools
 
General: MAGIC HEXAGON
Choose another message board
Previous subject  Next subject
Reply  Message 1 of 4 on the subject 
From: BARILOCHENSE6999  (Original message) Sent: 19/03/2021 22:53

Magic Hexagon

DOWNLOAD Mathematica Notebook MagicHexagon

A magic hexagon of order n is an arrangement of close-packed hexagons containing the numbers 1, 2, ..., H_(n-1), where H_n is the nth hex number such that the numbers along each straight line add up to the same sum. (Here, the hex numbers are i.e., 1, 7, 19, 37, 61, 91, 127, ...; OEIS A003215). In the above magic hexagon of order n=3, each line (those of lengths 3, 4, and 5) adds up to 38.

It was discovered independently by Ernst von Haselberg in 1887 (Bauch 1990, Hemme 1990), W. Radcliffe in 1895 (Tapson 1987, Hemme 1990, Heinz), H. Lulli (Hendricks, Heinz), Martin Kühl in 1940 (Gardner 1963, 1984; Honsberger 1973), Clifford W. Adams, who worked on the problem from 1910 to 1957 (Gardner 1963, 1984; Honsberger 1973), and Vickers (1958; Trigg 1964).

This problem and the solution have a long history. Adams came across the problem in 1910. He worked on the problem by trial and error and after many years arrived at the solution which he transmitted to M. Gardner, Gardner sent Adams' magic hexagon to Charles W. Trigg, who by mathematical analysis found that it was unique disregarding rotations and reflections (Gardner 1984, p. 24). Adams' result and Trigg's work were written up by Gardner (1963). Trigg (1964) did further research and summarized known results and the history of the problem.

Trigg showed that the magic constant for an order n hexagon would be

 (9(n^4-2n^3+2n^2-n)+2)/(2(2n-1)),

the first few of which are 1, 28/3, 38, 703/7, 1891/9, 4186/11, ... (OEIS A097361 and A097362), which requires 5/(2n-1) to be an integer for a solution to exist. But this is an integer for only n=1 (the trivial case of a single hexagon) and Adams's n=3 (Gardner 1984, p. 24).



First  Previous  2 to 4 of 4  Next   Last  
Reply  Message 2 of 4 on the subject 
From: BARILOCHENSE6999 Sent: 17/08/2021 23:01
Infografía: Cómo será el telescopio más grande del mundo que se construirá  en Chile | Emol.com

Reply  Message 3 of 4 on the subject 
From: Jonas728 Sent: 24/12/2021 08:56
A magic hexagon is basically an arrangement of numbers in a centered hexagon pattern. The proofreading services can help you to understand this kind of configuration and you can easily do your assignment regarding geometry.

Reply  Message 4 of 4 on the subject 
From: BARILOCHENSE6999 Sent: 30/03/2025 16:54
No hay ninguna descripción de la foto disponible.
 
The Egyptian Royal Cubit and the Foot are units of measure connected by the fraction 12/7 = 1.714285... (or 5/7 = .714285...)
The Hexagon is said to be the symbol of creation containing 7 points (middle and 6).
We naturally mark 12 points on a circle (time) by dividing 360 by 30.
When we consider 147 as the ancient egyptian sacred number it's no wonder that length was used as the original Royal Cubit length of the Sphinx or 252 feet. Some math:
252-147 = 105
147/105 = 1.4
252/105 = 2.4
 
 
https://www.facebook.com/photo.php?fbid=616622461722982&id=159074557477777&set=a.410818145636749


First  Previous  2 a 4 de 4  Next   Last  
Previous subject  Next subject
 
©2025 - Gabitos - All rights reserved