Página principal  |  Contacto  

Correo electrónico:

Contraseña:

Registrarse ahora!

¿Has olvidado tu contraseña?

Secreto Masonico
 
Novedades
  Únete ahora
  Panel de mensajes 
  Galería de imágenes 
 Archivos y documentos 
 Encuestas y Test 
  Lista de Participantes
 EL SECRETO DE LA INICIACIÓN 
 Procesos Secretos del Alma 
 Estructura Secreta del Ritual Masónico 
 Los extraños Ritos de Sangre 
 Cámara de Reflexiones 
 
 
  Herramientas
 
General: NUMERO DE LA PLATA (RELACION CON EL OCTOGONO)=√2 = 1,414213562
Elegir otro panel de mensajes
Tema anterior  Tema siguiente
Respuesta  Mensaje 1 de 25 en el tema 
De: BARILOCHENSE6999  (Mensaje original) Enviado: 09/06/2015 02:12
Pie
Haz clic en la imagen para volver

INICIACIÓN A LOS NÚMEROS DE LA ARQUITECTURA O DE COMO DARLE FORMA A UN EDIFICIO

Los números pueden estar explicados matemáticamente en la “red” pero el problema que plantea el conocimiento de la arquitectura es: ¿cómo se le da forma con esos números a un edificio?. En arquitectura los números operan a partir de los polígonos estrellados formando concatenaciones, tal y como a continuación vamos a describir.

Pentágono

NÚMERO DE ORO - PENTÁGONO

El número de oro viene dado por la solución a la ecuación de segundo grado
x + x² = 1     x =   1+√5 /2  =  1,618033989
Propiedades  1/ 1,618   =  0,618        1,618... x 1,618...  =   2,618...
Dado una circunferencia de radio 1 el lado del decágono inscrito en él es 0,618...
Dado un pentágono de lado 1, las diagonales de ese pentágono = 1,618...
La técnica con la que opera la arquitectura es la de las concatenaciones.
Una de ellas, la más usual, es la que presentamos en el dibujo. Si la circunferencia en color azul tiene R=1 el radio de la roja es R= 2,618, correspondiente a la que presentamos en El vitruvio” de Leonardo da Vinci en la portada de este trabajo.

Se aplicará en la restitución de una tabla de F. Brunelleschi  Nº 6.
Octógono
Hexágono

NÚMERO DE PLATA - EL OCTÓGONO

Así como el número de oro está asociado a la √5 el número de plata está asociado a √2 y presenta una serie de propiedades similares a las del número de oro.
√2 = 1,414213562        tg. 22,5º = 0,414213562
tg.67,5º = 2,414213562
1/2,4142... =  0,4142...          2,4142... x 1,4142... =   3,4142...
Observa nuevamente la concatenación, esta vez con el octógono, de la circunferencia en color azul sobre la de color rojo.
Si el radio de la circunferencia azul es 1 la de color rojo es 2,4142....
Si el radio de la circunferencia azul es 0,4142... la de rojo es 1.
Aquí tenéis un ejemplo.

Se aplicará en la Rix House de J. Soane  Nº 3.

NÚMERO DE PLATINO - EL HEXÁGONO

De igual forma que el número de oro está relacionado con la √5 y el de plata con la √2, el de platino lo va a estar con la √3
√3 = tg.60º = 1,732050808
1,732... x 2,732...  =  4,732...
Combinación, esta, muy utilizada por Andrea Palladio.
Observa la concatenación de la circunferencia azul sobre la de rojo, a través del hexágono, directamente a la circunferencia azul. Si el radio de la circunferencia color azul es 1 el de la circunferencia en color rojo es 2 y el lado del triángulo inscrito es 2 x 1,732...
Este polígono es el más prolífico en la historia de arquitectura como vamos a verlo en los ejercicios.
Aquí tenéis un ejemplo.

Se aplicará al resto de los trabajos Nº 1 - 2 - 4 y 5.
Todos los derechos reservados. Depósito Legal ZA - Nº 69 - 1998
Página web optimizada para ver en resolución de 1024 x 768
2006 - 2007


Primer  Anterior  2 a 10 de 25  Siguiente   Último 
Respuesta  Mensaje 2 de 25 en el tema 
De: BARILOCHENSE6999 Enviado: 09/06/2015 02:19
LA CURVA DEL SENO, QUE ES EL PATRON MUNDIAL DE TODOS LOS TIPOS DE ONDA, SI LA DIVIDIMOS EN OCHO TENEMOS:
 
SENO 45=1/√2
SENO 90=1
SENO 135=1/√2
SENO 180=0
SENO 225=-1/√2
SENO 270=-1
SENO 315=-1/√2
SENO 360=O
 
NOTAMOS LA RELACION CON EL NUMERO DE LA PLATA.

Respuesta  Mensaje 3 de 25 en el tema 
De: BARILOCHENSE6999 Enviado: 10/06/2015 02:32
VENUS, EN CUANTO A SU CICLO SIDEREO, NOTAMOS LA RELACION CON EL 225, QUE TAMBIEN ESTA RELACIONADA CON EL NUMERO OCHO.
 
 
 
OCHO CICLO TERRESTRES=13 CICLOS DE VENUS

Respuesta  Mensaje 4 de 25 en el tema 
De: BARILOCHENSE6999 Enviado: 10/06/2015 03:26
 
LLAVE DE DAVID/SALOMON/ SEÑAL DE JONAS / REINA DE ETIOPIA/ GIZE / ORION / IGLESIA COPTA / JUAN MARCOS
LLEGADA A LA LUNA EN EL 153 ANIVERSARIO DE LA INDEPENDENCIA ARGENTINA. ESTO EXPLICA DEL PORQUE "EL DIA DEL AMIGO" LO INVENTO UN ARGENTINO.
¿PORQUE LA DIVINIDAD DISEÑO CON ESTE DISEÑO GEOMETRICO LOS DOS OJOS QUE TENEMOS? ¿QUE MENSAJE NOS QUIERE DAR YHWH? VESICA PISCES TIENE RELACION CON EL NUMERO 153.
 
 

 

IN GOD WE TRUST

 
 

NOSOTROS CREEMOS EN DIOS

 
 

EL 1 DE MAYO DE 1776=1/5/1+7+7+6=21=2+1=3 OSEA 1/5/3

 
 
 

"porque, cuando Jonás estaba en la barriga del pez tres días y tres noches, así el Hijo de Hombre estará en el corazón de la tierra tres días y tres noches".

- Mateo12:40

 

EFECTIVAMENTE 1969-1816=153

 

1816 (ANAGRAMA DE PHI=1.618)

 

1816=227X8

 

¿LA PREGUNTA ES DEL PORQUE DE LA RELACION CON LA ARGENTINA?

 
 
ARGENTINA/ ARGENTUM/ PLATA/ PUERTA DE PLATA / ORION-MERCURIO / HYDRARGYROS-ARGYROS=PLATA / SECRETO DETRAS DEL PAPA ARGENTINO
 
 
 
 
MERCURIO
 
Afelio y perihelio de la órbita de Mercurio

La particularidad de esta línea de perihelio/afelio de Mercurio es que está alineada con la Línea fija formada por Orión/Sol/CentroGaláctico, y como la Tierra pasa cada 19 de junio entre el Sol y el Centro galáctico, eso significa que también en ese día pasa frente al afelio de la órbita Mercurio, y frente al perihelio el 19 de diciembre.

Si "eliminamos" la excentricidad y convertimos la órbita de Mercurio es un círculo racional perfectamente equidistante del Sol, resulta que la órbita de Mercurio inscribe a un pentágono (inscrito en la órbita "perfeccionada" de Mercurio), y este pentágono es la figura interior que resulta de la estrella de 5 puntas formada por la Tierra y Venus durante 8 órbitas de la Tierra y 13 de Venus (8 años), lo cual es el Ciclo Pentagonal.

 

ENLACES

 
 
MERCURIO ERA EL DIOS DE LOS MERCADERES
 
SAULO/PABLO ES MERCURIO SEGUN HECHOS 14
1. Hechos 14:12: Y a Bernabé llamaban Júpiter, y a Pablo, MERCURIO, porque éste era el que llevaba la palabra.

Respuesta  Mensaje 5 de 25 en el tema 
De: BARILOCHENSE6999 Enviado: 12/07/2015 01:38

Sinusoidal Waveforms

Generation of Sinusoidal Waveforms

In our tutorials about Electromagnetism, we saw how an electric current flowing through a conductor can be used to generate a magnetic field around itself, and also if a single wire conductor is moved or rotated within a stationary magnetic field, an “EMF”, (Electro-Motive Force) will be induced within the conductor due to this movement.

From this tutorial we learnt that a relationship exists between Electricity and Magnetism giving us, as Michael Faraday discovered the effect of “Electromagnetic Induction” and it is this basic principal that electrical machines and generators use to generate a Sinusoidal Waveform for our mains supply.

rotating coil

In the Electromagnetic Induction, tutorial we said that when a single wire conductor moves through a permanent magnetic field thereby cutting its lines of flux, an EMF is induced in it.

However, if the conductor moves in parallel with the magnetic field in the case of points A and B, no lines of flux are cut and no EMF is induced into the conductor, but if the conductor moves at right angles to the magnetic field as in the case of points C and D, the maximum amount of magnetic flux is cut producing the maximum amount of induced EMF.

Also, as the conductor cuts the magnetic field at different angles between points A and C, 0 and 90o the amount of induced EMF will lie somewhere between this zero and maximum value. Then the amount of emf induced within a conductor depends on the angle between the conductor and the magnetic flux as well as the strength of the magnetic field.

An AC generator uses the principal of Faraday’s electromagnetic induction to convert a mechanical energy such as rotation, into electrical energy, a Sinusoidal Waveform. A simple generator consists of a pair of permanent magnets producing a fixed magnetic field between a north and a south pole. Inside this magnetic field is a single rectangular loop of wire that can be rotated around a fixed axis allowing it to cut the magnetic flux at various angles as shown below.

Basic Single Coil AC Generator

AC generator

 

As the coil rotates anticlockwise around the central axis which is perpendicular to the magnetic field, the wire loop cuts the lines of magnetic force set up between the north and south poles at different angles as the loop rotates. The amount of induced EMF in the loop at any instant of time is proportional to the angle of rotation of the wire loop.

As this wire loop rotates, electrons in the wire flow in one direction around the loop. Now when the wire loop has rotated past the 180o point and moves across the magnetic lines of force in the opposite direction, the electrons in the wire loop change and flow in the opposite direction. Then the direction of the electron movement determines the polarity of the induced voltage.

So we can see that when the loop or coil physically rotates one complete revolution, or 360o, one full sinusoidal waveform is produced with one cycle of the waveform being produced for each revolution of the coil. As the coil rotates within the magnetic field, the electrical connections are made to the coil by means of carbon brushes and slip-rings which are used to transfer the electrical current induced in the coil.

The amount of EMF induced into a coil cutting the magnetic lines of force is determined by the following three factors.

  • • Speed – the speed at which the coil rotates inside the magnetic field.
  • • Strength – the strength of the magnetic field.
  • • Length – the length of the coil or conductor passing through the magnetic field.

We know that the frequency of a supply is the number of times a cycle appears in one second and that frequency is measured in Hertz. As one cycle of induced emf is produced each full revolution of the coil through a magnetic field comprising of a north and south pole as shown above, if the coil rotates at a constant speed a constant number of cycles will be produced per second giving a constant frequency. So by increasing the speed of rotation of the coil the frequency will also be increased. Therefore, frequency is proportional to the speed of rotation, ( ƒ ∝ Ν ) where Ν = r.p.m.

Also, our simple single coil generator above only has two poles, one north and one south pole, giving just one pair of poles. If we add more magnetic poles to the generator above so that it now has four poles in total, two north and two south, then for each revolution of the coil two cycles will be produced for the same rotational speed. Therefore, frequency is proportional to the number of pairs of magnetic poles, ( ƒ ∝ P ) of the generator where P = is the number of “pairs of poles”.

Then from these two facts we can say that the frequency output from an AC generator is:

generator frequency

 

Where: Ν is the speed of rotation in r.p.m. P is the number of “pairs of poles” and 60 converts it into seconds.

Instantaneous Voltage

The EMF induced in the coil at any instant of time depends upon the rate or speed at which the coil cuts the lines of magnetic flux between the poles and this is dependant upon the angle of rotation, Theta ( θ ) of the generating device. Because an AC waveform is constantly changing its value or amplitude, the waveform at any instant in time will have a different value from its next instant in time.

For example, the value at 1ms will be different to the value at 1.2ms and so on. These values are known generally as the Instantaneous Values, or Vi Then the instantaneous value of the waveform and also its direction will vary according to the position of the coil within the magnetic field as shown below.

Displacement of a Coil within a Magnetic Field

 

displacement of a coil

 

The instantaneous values of a sinusoidal waveform is given as the “Instantaneous value = Maximum value x sin θ ” and this is generalized by the formula.

instantaneous value

Where, Vmax is the maximum voltage induced in the coil and θ = ωt, is the angle of coil rotation.

If we know the maximum or peak value of the waveform, by using the formula above the instantaneous values at various points along the waveform can be calculated. By plotting these values out onto graph paper, a sinusoidal waveform shape can be constructed.

In order to keep things simple we will plot the instantaneous values for the sinusoidal waveform at every 45o of rotation giving us 8 points to plot. Again, to keep it simple we will assume a maximum voltage, VMAX value of 100V. Plotting the instantaneous values at shorter intervals, for example at every 30o (12 points) or 10o (36 points) for example would result in a more accurate sinusoidal waveform construction.

Sinusoidal Waveform Construction

Coil Angle ( θ ) 0 45 90 135 180 225 270 315 360
e = Vmax.sinθ 0 70.71 100 70.71 0 -70.71 -100 -70.71 -0

sinusoidal waveforms

 

The points on the sinusoidal waveform are obtained by projecting across from the various positions of rotation between 0o and 360o to the ordinate of the waveform that corresponds to the angle, θ and when the wire loop or coil rotates one complete revolution, or 360o, one full waveform is produced.

List Price: $49.95
Current Price: $20.83
Buy Now
Price Disclaimer
 

From the plot of the sinusoidal waveform we can see that when θ is equal to 0o, 180o or 360o, the generated EMF is zero as the coil cuts the minimum amount of lines of flux. But when θ is equal to 90o and 270o the generated EMF is at its maximum value as the maximum amount of flux is cut.

Therefore a sinusoidal waveform has a positive peak at 90o and a negative peak at 270o. Positions B, D, F and H generate a value of EMF corresponding to the formula e = Vmax.sinθ.

Then the waveform shape produced by our simple single loop generator is commonly referred to as a Sine Wave as it is said to be sinusoidal in its shape. This type of waveform is called a sine wave because it is based on the trigonometric sine function used in mathematics, ( x(t) = Amax.sinθ ).

When dealing with sine waves in the time domain and especially current related sine waves the unit of measurement used along the horizontal axis of the waveform can be either time, degrees or radians. In electrical engineering it is more common to use the Radian as the angular measurement of the angle along the horizontal axis rather than degrees. For example, ω = 100 rad/s, or 500 rad/s.

Radians

The Radian, (rad) is defined mathematically as a quadrant of a circle where the distance subtended on the circumference equals the radius (r) of the circle. Since the circumference of a circle is equal to 2π x radius, there must be radians around a 360o circle, so 1 radian = 360o/ = 57.3o. In electrical engineering the use of radians is very common so it is important to remember the following formula.

Definition of a Radian

Radians

 
definition of radians

Using radians as the unit of measurement for a sinusoidal waveform would give radians for one full cycle of 360o. Then half a sinusoidal waveform must be equal to radians or just π (pi). Then knowing that pi, π is equal to 3.142 or 22÷7, the relationship between degrees and radians for a sinusoidal waveform is given as.

Relationship between Degrees and Radians

degrees to radians

Applying these two equations to various points along the waveform gives us.

 

sinusoidal waveform radians

 

The conversion between degrees and radians for the more common equivalents used in sinusoidal analysis are given in the following table.

Relationship between Degrees and Radians

Degrees Radians Degrees Radians Degrees Radians
0o 0 135o
 3π 
4
270o
 3π 
2
30o
 π 
6
150o
 5π 
6
300o
 5π 
3
45o
 π 
4
180o π 315o
 7π 
4
60o
 π 
3
210o
 7π 
6
330o
 11π 
6
90o
 π 
2
225o
 5π 
4
360o
120o
 2π 
3
240o
 4π 
3
     

The velocity at which the generator rotates around its central axis determines the frequency of the sinusoidal waveform. As the frequency of the waveform is given as ƒ Hz or cycles per second, the waveform has angular frequency, ω, (Greek letter omega), in radians per second. Then the angular velocity of a sinusoidal waveform is given as.

Angular Velocity of a Sinusoidal Waveform

angular velocity of a sinusoid

and in the United Kingdom, the angular velocity or frequency of the mains supply is given as:

angular frequency

 

in the USA as their mains supply frequency is 60Hz it is therefore: 377 rad/s

So we now know that the velocity at which the generator rotates around its central axis determines the frequency of the sinusoidal waveform and which can also be called its angular velocity, ω. But we should by now also know that the time required to complete one revolution is equal to the periodic time, (T) of the sinusoidal waveform.

As frequency is inversely proportional to its time period, ƒ = 1/T we can therefore substitute the frequency quantity in the above equation for the equivalent periodic time quantity and substituting gives us.

angular velocity

 

The above equation states that for a smaller periodic time of the sinusoidal waveform, the greater must be the angular velocity of the waveform. Likewise in the equation above for the frequency quantity, the higher the frequency the higher the angular velocity.

Sinusoidal Waveform Example No1

A sinusoidal waveform is defined as: Vm = 169.8 sin(377t) volts. Calculate the RMS voltage of the waveform, its frequency and the instantaneous value of the voltage after a time of 6ms.

We know from above that the general expression given for a sinusoidal waveform is:

sinusoidal expression

 

Then comparing this to our given expression for a sinusoidal waveform above of Vm = 169.8 sin(377t) will give us the peak voltage value of 169.8 volts for the waveform.

The waveforms RMS voltage is calculated as:

rms voltage

 

The angular velocity (ω) is given as 377 rad/s. Then 2πƒ = 377. So the frequency of the waveform is calculated as:

 

sinusoidal waveform frequency

 

The instantaneous voltage Vi value after a time of 6mS is given as:

instantaneous voltage

 

Note that the phase angle at time t = 6mS is given in radians. We could quite easily convert this to degrees if we wanted to and use this value instead to calculate the instantaneous voltage value. The angle in degrees will therefore be given as:

phase angle

Sinusoidal Waveform

Then the generalised format used for analysing and calculating the various values of a Sinusoidal Waveform is as follows:

A Sinusoidal Waveform

sinusoidal waveform

 

In the next tutorial about Phase Difference we will look at the relationship between two sinusoidal waveforms that are of the same frequency but pass through the horizontal zero axis at different time intervals.

 
 
Reply  Message 14 of 14 on the subject 
From: BARILOCHENSE6999 Sent: 11/07/2015 22:25

Respuesta  Mensaje 6 de 25 en el tema 
De: BARILOCHENSE6999 Enviado: 27/07/2015 03:19

Respuesta  Mensaje 7 de 25 en el tema 
De: BARILOCHENSE6999 Enviado: 03/09/2015 03:29
 
EL CUBO ES SINONIMO DE VESICA PISCIS POR SU RELACION CON LA RAIZ DE TRES, CUYO VALOR RACIONAL MAS APROXIMADO ES EL 265/153
 
sqrt2_sqrt3

Respuesta  Mensaje 8 de 25 en el tema 
De: BARILOCHENSE6999 Enviado: 03/09/2015 03:34
EL CUBO ES SINONIMO DE VESICA PISCIS POR SU RELACION CON LA RAIZ DE TRES (EXAGONO), CUYO VALOR RACIONAL MAS APROXIMADO ES EL 265/153 Y CON EL NUMERO DE LA PLATA (OCTOGONO) CUYO VALOR ES IGUAL A LA RAIZ DE 2.
 
sqrt2_sqrt3

Respuesta  Mensaje 9 de 25 en el tema 
De: BARILOCHENSE6999 Enviado: 19/10/2015 03:21
 
216=6*6*6=108*2
 
HAY UN OBVIO NEXO CON EL DIAMETRO DE LA LUNA EN EL CONTEXTO AL PENTAGONO
 
 
Reply  Message 96 of 96 on the subject 
From: BARILOCHENSE6999 Sent: 19/10/2015 00:17

Respuesta  Mensaje 10 de 25 en el tema 
De: BARILOCHENSE6999 Enviado: 14/12/2016 14:34
Resultado de imagen para hexagon circle calculator


Primer  Anterior  2 a 10 de 25  Siguiente   Último 
Tema anterior  Tema siguiente
 
©2024 - Gabitos - Todos los derechos reservados