TABERNACULO =TEMPLO DE SALOMON = KAABA = GIZE= VATICANO= WASHINGTON D.C = NUEVA JERUSALEN = JUAN MARCOS
CENACULO DE JERUSALEN=SAN MARCOS
"AGUJERO DE GUSANO MUNDIAL" ES VESICA PISCIS. NEXO CON EL CUBO
En diversos periodos de la historia ha sido tema de especulaciones místicas; probablemente los primeros fueron los Pitagóricos, que la consideraban una figura sagrada. La razón matemática de su anchura (medida por los puntos extremos del "cuerpo", sin incluir la "cola") por su altura fue aproximada por el cociente 265:153. Esta razón, que da 1,73203, se consideró un número sagrado llamado la medida del pez. Exactamente, la razón geométrica de estas dimensiones es la raíz cuadrada de 3, o 1,73205... (ya que si se traza la línea recta que une los centros de ambos círculos, junto con los dos puntos donde los círculos se intersecan, se obtienen dos triángulos equiláteros unidos por un lado). El cociente 265:153 es una aproximación a la raíz cuadrada de 3, y tiene la propiedad de que no se puede obtener ninguna aproximación mejor con números más pequeños. El número 153 aparece en el Evangelio de Juan (21:11) como el número de peces que Jesús hizo que se capturaran en la milagrosa captura de los peces, lo que algunos consideran como una referencia cifrada de las creencias pitagóricas.
APOCALIPSIS 21
NU-EVA J-ER-U-S-A-LE-N /JUAN
EVA (NUMERO NU-EVE)=MARIA MAGDALENA O MARIA LA GRANDE
JUAN MARCOS=SANTO GRIAL
9. Vino entonces a mí uno de los siete ángeles que tenían las siete copas llenas de las siete plagas postreras, y habló conmigo, diciendo: Ven acá, yo te mostraré la desposada, la esposa del Cordero. (Noten la relacion de la COPA CON LA ESPOSA DEL CORDERO)
10. Y me llevó en el Espíritu a un monte grande y alto, y me mostró la gran ciudad santa de Jerusalén, que descendía del cielo, de Dios,
11. teniendo la gloria de Dios. Y su fulgor era semejante al de una piedra preciosísima, como piedra de jaspe, diáfana como el cristal. (LA "GLORIA DE DIOS" es una clave sabatica en contexto a EXODO 24 Y 25. Se vuelve a repetir el patron del libro de EFESO EN SU CAPITULO 5.)
12. Tenía un muro grande y alto con doce puertas; y en las puertas, doce ángeles, y nombres inscritos, que son los de las doce tribus de los hijos de Israel;
13. al oriente tres puertas; al norte tres puertas; al sur tres puertas; al occidente tres puertas.
14. Y el muro de la ciudad tenía doce cimientos, y sobre ellos los doce nombres de los doce apóstoles del Cordero.
ESTRELLA DE DAVID ES LA ALQUIMIA, OSEA LA UNION ENTRE EL HOMBRE Y LA MUJER
(ABCD) Double Square in Solomons Temple
EL LUGAR SANTISIMO DEL TABERNACULO Y DEL TEMPLO DE SALOMON TENIA FORMA DE CUBO
NOTEN LA ESTRELLA DE 5 PUNTAS EN EL CENTRO DEL EXAGONO CENTRO DE LA ESTRELLA DE 6 PUNTAS
EL EXAGONO TAMBIEN ES UNA REFERENCIA AL CUBO.
NOTEN QUE EN ESTA ESTRELLA DE 6 PUNTAS HAY 13 TRIANGULOS DE 5 PUNTAS, OSEA QUE NOS DA UN NEXO CON LAS 12 CONSTELACIONES DEL ZODIACO, CON LAS 12 HORAS DEL DIA, CON LAS 12 LUNAS QUE HAY EN EL CALENDARIO, CON LA SANTA CENA EN EL CONTEXTO A LOS 12 APOSTOLES, CON LAS 12 TRIBUS DE ISRAEL, CON EL MERIDIANO DE GREENWICH E INCLUSO CON ROSE LINE, ETC,ETC. TODO TIENE COMO PATRON LA ESTRELLA DE 6 PUNTAS, OSEA LA UNION ENTRE EL HOMBRE Y LA MUJER QUE LA TRADICION RELIGIOSA "OLVIDO". ESTE ES EL PATRON ESOTERICO DETRAS DE APOCALIPSIS 22 EN SU RELACION CON VENUS.
Noten el MONSTRUOSO NUMERO 36, incluso con la FORMA DE ORION, en una estrella de 6 puntas. Son siete pelotitas, con 6 perimetrales. 6x6=36
AQUI ESTA EL ULTRA SECRETO DEL NEXO 666 CON LA PIRAMIDE DE LOUVRE, EN EL CODIGO DA VINCI. 1+2+3+ 4+5+6+7+8+9 +20+11+12+13 +14+15+16+17+18 +19+20+21+22+23 +24+25+ 26+27+28+29 +30+31 +32+33+ 34+35 +36=666
Kaaba, Mecca:
15. El que hablaba conmigo tenía una caña de medir, de oro, para medir la ciudad, sus puertas y su muro.
16. La ciudad se halla establecida en cuadro, y su longitud es igual a su anchura; y él midió la ciudad con la caña, doce mil estadios; la longitud, la altura y la anchura de ella son iguales. (LA CUBICACION DE UNA ESFERA. HAY UN OBVIO NEXO ALQUIMICO. LA GRAN CIUDAD ESTA DISEÑADA CON EL MISMO PATRON DE LA GRAN PIRAMIDE DE GIZE)
Figura 16. La relación geométrica entre el codo real y el metro.
ESTE ES EL SECRETO DEL NEXO "ROSE LINE", EN EL CONTEXTO AL METRO Y EN EL CONTEXTO A LA PIRAMIDE DE LOUVRE.
17. Y midió su muro, ciento cuarenta y cuatro codos, de medida de hombre, la cual es de ángel.
21. Las doce puertas eran doce perlas; cada una de las puertas era una perla. Y la calle de la ciudad era de oro puro, transparente como vidrio.
22. Y no vi en ella templo; porque el Señor Dios Todopoderoso es el templo de ella, y el Cordero.
23. La ciudad no tiene necesidad de sol ni de luna que brillen en ella; porque la gloria de Dios la ilumina, y el Cordero es su lumbrera.
Haz clic en la imagen para volver
INICIACIÓN A LOS NÚMEROS DE LA ARQUITECTURA O DE COMO DARLE FORMA A UN EDIFICIO
Los números pueden estar explicados matemáticamente en la “red” pero el problema que plantea el conocimiento de la arquitectura es: ¿cómo se le da forma con esos números a un edificio?. En arquitectura los números operan a partir de los polígonos estrellados formando concatenaciones, tal y como a continuación vamos a describir.
NÚMERO DE ORO - PENTÁGONO
El número de oro viene dado por la solución a la ecuación de segundo grado x + x² = 1 x = 1+√5 /2 = 1,618033989 Propiedades 1/ 1,618 = 0,618 1,618... x 1,618... = 2,618... Dado una circunferencia de radio 1 el lado del decágono inscrito en él es 0,618... Dado un pentágono de lado 1, las diagonales de ese pentágono = 1,618... La técnica con la que opera la arquitectura es la de las concatenaciones. Una de ellas, la más usual, es la que presentamos en el dibujo. Si la circunferencia en color azul tiene R=1 el radio de la roja es R= 2,618, correspondiente a la que presentamos en “El vitruvio” deLeonardo da Vinci en la portada de este trabajo.
Se aplicará en la restitución de una tabla de F. Brunelleschi Nº 6.
NÚMERO DE PLATA - EL OCTÓGONO
Así como el número de oro está asociado a la √5 el número de plata está asociado a √2 y presenta una serie de propiedades similares a las del número de oro. √2 = 1,414213562 tg. 22,5º = 0,414213562 tg.67,5º = 2,414213562 1/2,4142... = 0,4142... 2,4142... x 1,4142... = 3,4142... Observa nuevamente la concatenación, esta vez con el octógono, de la circunferencia en color azul sobre la de color rojo. Si el radio de la circunferencia azul es 1 la de color rojo es 2,4142.... Si el radio de la circunferencia azul es 0,4142... la de rojo es 1. Aquí tenéis un ejemplo.
Se aplicará en la Rix House de J. Soane Nº 3.
NÚMERO DE PLATINO - EL HEXÁGONO
De igual forma que el número de oro está relacionado con la √5 y el de plata con la √2, el de platino lo va a estar con la √3 √3 = tg.60º = 1,732050808 1,732... x 2,732... = 4,732... Combinación, esta, muy utilizada por Andrea Palladio. Observa la concatenación de la circunferencia azul sobre la de rojo, a través del hexágono, directamente a la circunferencia azul. Si el radio de la circunferencia color azul es 1 el de la circunferencia en color rojo es 2 y el lado del triángulo inscrito es 2 x 1,732... Este polígono es el más prolífico en la historia de arquitectura como vamos a verlo en los ejercicios. Aquí tenéis un ejemplo.
Se aplicará al resto de los trabajos Nº 1 - 2 - 4 y 5.
Todos los derechos reservados. Depósito Legal ZA - Nº 69 - 1998
Página web optimizada para ver en resolución de 1024 x 768 2006 - 2007
Las escaleras de los Museos Vaticanos son una obra de arte más que añadir a la Capilla Sixtina, el Laocoonte o los Dalí y Miró que a menudo pasan desapercibidos, porque todo el mundo sigue las flechas hacia la gran obra pictórica de Miguel Ángel.
Escalera de Bramante del Vaticano
Esta increíble escalera que en un genial efecto óptico parece que no va a terminar nunca es obra de Donato d’Angelo Bramante, que ha pasado a la posteridad como Bramante. Vivió a caballo entre los siglos XV y XVI, y fue uno de los arquitectos italianos más reconocido, por ser el ideólogo de la Basílica de San Pedro.Bramante fue además quien introdujo el Renacimiento en Milán y realizó obras tan hipnóticas como esta escalera que emula las espirales del ADN. El efecto “infinito” lo consigue la doble hélice enrollada hacia la derecha. En realidad, cuando nos asomamos a la escalera, si nos fijamos, vemos que en realidad no es una sóla escalera, sino dos enroscadas. Una de ellas es para bajar y otra para subir.
La escalera se encuentra a la salida de los Museos Vaticanos, en realidad, es la última obra de arte que se contempla en las galería y el visitante se lleva de recuerdo esta espiral sin fin. Si la escalera está practicamente vacía, como en la foto, es más difícil de descubrirle el truco al artista, pero si circula gente, que es lo habitual, el secreto está en fijarnos en que una de las espirales está llena de personas – la de bajada – y otra casi vacía, – la de subida -, porque está cerrada al público.
Madrid celebra a Leonardo da Vinci y expone sus Códices y la Tavola Lucana
Con el objetivo de mostrar no solo al genio sino al "hombre de carne y hueso" que fue Leonardo da Vinci, la Biblioteca Nacional y el Palacio de las Alhajas conmemoran desde hoy el quinto centenario de su muerte con una exposición que ofrece dos "joyas": los Códices de Madrid y la Tavola Lucana.
"Leonardo da Vinci: los rostros del genio" es el título de la exposición que ha sido presentada hoy por su comisario, Christian Gálvez, presentador de televisión y experto en la figura del maestro renacentista, y la directora de la Biblioteca Nacional (BNE), Ana Santos, quienes han destacado la oportunidad de ver tanto los Códices, los dos únicos textos de Leonardo que se conservan en España, como la Tavola Lucana, identificada como el autorretrato del italiano.
Una exposición con dos sedes, el Palacio de las Alhajas y la BNE, con las que Madrid se une a los actos de conmemoración del quinto centenario de la muerte de Da Vinci, que se cumple el 2 de mayo de 2019.
Un gran cubo con los posibles rostros de Leonardo reciben al visitante en el Palacio de las Alhajas, una forma de reflejar "la mente poliédrica de Da Vinci y la transversalidad de su conocimiento", ha explicado hoy Gálvez en la presentación de esta exposición, que enseña cómo para él era tan importante la obra acabada como la inacabada.
Imágenes de los coetáneos de Da Vinci acompañan a reproducciones de sus principales obras pictóricas, entre las que destacan "La última cena" y " La Gioconda" y sus trabajos preparatorios, junto a sus estudios de anatomía que abordó tanto con un propósito artístico como científico.
Además, la exposición ofrece numerosas maquetas tanto físicas como virtuales de las avanzadas máquinas e ingenios ideadas por un hombre "que nunca dejó de volar con la imaginación", ha indicado Gálvez.
Tras un apartado dedicado a las posibles "caras" de Leonardo, la muestra expone por primera vez en España la "Tavola Lucana", descubierta en 2008 por el historiador de arte Nicola Barbatelli, quien ha asegurado hoy que es el único retrato que reúne todas las condiciones para asegurar que representa al maestro florentino.
Estudios de pigmentación, materiales, técnicas y detalles en el cuadro han determinado que se trataba de un autorretrato de Da Vinci, ha indicado Barbatelli.
Al mismo tiempo, la Biblioteca Nacional abre hoy por primera vez su vestíbulo como espacio expositivo para mostrar dos "joyas" de sus fondos, los Códices Madrid I y Madrid II de Leonardo da Vinci.
Redactados en torno a 1500 con su escritura inversa (era zurdo), los códices son los únicos que conserva España de la colección de manuscritos que llegó a Madrid a principios del XVII: El Códice I es un tratado de mecánica y estática mientras que el II es un estudio de fortificación, estática y geometría.
Aunque la exposición permanecerá abierta hasta el 19 de mayo de 2019, los códices originales solo podrán ser contemplados un mes, en el que se irán alternando, para garantizar su adecuada conservación, ha indicado la directora de la BNE, que ha explicado que luego serán sustituidos por sus facsímiles.
Acompañarán a estos dos volúmenes otras 32 obras de la colección de la BNE que contextualizan las vida y obras de Leonardo da Vinci, así como reconstrucciones de máquinas dibujadas en los códices por el maestro y de uno de los mayores proyectos que acometió, el enorme caballo diseñado para Ludovico Sforza.
Why limit oneself to 2 dimensions of multimagic squares? The Canadian John-R. Hendricks, the world's foremost expert on magic squares, created in June 2000 the first known bimagic cube. So, this bimagic cube is also the first known multimagic cube. His remarkable cube is 25th-order (=25x25x25 sized), and contains all the numbers from 1 to 15,625. The magic sum is 195,325, and the bimagic sum is 2,034,700,525. Holger Danielsson has created a PDF document (510Kb) giving details of this cube. See the biography of John R. Hendricks. See also another biography published in the Journal of Recreational Mathematics.
However, I have big doubts on the paternity of this cube. In his "The Magic Square Course", second edition 1992 (very limited distribution as was the first edition 1991, only few photocopied samples), John-R. Hendricks wrote page 411 : "David M. Collison, in an unpublished paper, has constructed a bimagic cube of order 25 (....) but it takes too much space to show here." Look at page 411. We may think from this text that John had actually received the cube. And exactly the same order 25, a very strange coincidence! David M. Collison (1937 - 1991), an Englishman, was living in Anaheim, California: often mentioned in "The Magic Square Course", he sent a lot of discoveries directly to John, and died one year before this second edition. When John published the cube in 2000, he strangely forgot to mention that David had previously constructed such a cube...
In 2003, new multimagic cubes were constructed, thus giving now the following list of the smallest known cubes, for each multimagic level:
(*) All the cubes were created in 2003 by Christian Boyer, except this bimagic cube of order 25 created in 2000 by John R. Hendricks or before 1991 by David M. Collison.
The bimagic cube of order 16 uses the numbers from 0 to 4095. The magic sum is 32,760, and the bimagic sum is 89,445,720. The 256 rows, 256 columns, 256 pillars and 4 triagonals (= the 4 main space diagonals) are bimagic. Since it is not necessary by the definition of a standard magic cube, the 96 diagonals of the various squares making up the bimagic cube are not bimagic. Therefore they are magic. Thanks to Harvey Heinz (Canada), Aale de Winkel (Netherlands) and Walter Trump (Germany) who verified the bimagic characteristics of the cube as soon as it was announced in January 2003.
The trimagic cube of order 64 uses the numbers from 0 to 262,143. The 4096 rows, 4096 columns, 4096 pillars and 4 triagonals are trimagic. The 384 diagonals are bimagic.
A trimagic cube of order 256 has also been created: it is "perfect", since all its diagonals are trimagic. This cube is a monster: it contains the numbers from 0 to 16,777,215, with for example the trimagic sum S3 = 302231418874861348454400. Thanks to Walter Trump (Germany) who verified the trimagic characteristics of these cubes as soon as they were announced in February 2003.
Eric Weisstein (USA) also checked this perfect trimagic cube of order 256 using Mathematica on Dec 6, 2003 and confirmed its properties. The check took 30 minutes on a 1GHz Macintosh G4.
Then tetramagic cubes even more monstrous have been created, checked by Renaud Lifchitz (France) and Yves Gallot (France). See some details about these two persons in the hypercubes page.
About the perfect tetramagic cube 8192, its 67,108,864 rows, 67,108,864 columns, 67,108,864 pillars, 4 triagonals, and 49,152 diagonals are tetramagic. Its magic sums are :
In honour of the year 2003 when all of the above multimagic cubes were created, all these cubes start with the number "2003" in their first corner!
In the September 2003 issue of Pour La Science, the French edition of Scientific American, I published an article about the history of magic cubes and about the construction of multimagic cubes. It is stated for example that my perfect tetramagic cube of order 8,192 is:
So big that, if you built it (imagine each cell as a small wooden die of 2cm x 2cm x 2cm where a number of 12 digits maximum is engraved), you may include within the cube... Notre-Dame de Paris!
So big that, if you check 1,000 dice (= 1000 numbers) per second, you will need more than 17 years to check the whole cube.
So big that, if you engrave on each die the name of each person currently living on the earth (instead of the number used), only 1% of the dice will be engraved! 99% of the dice will remain blank.
The perfect tetramagic cube of order 8,192 can easily include Notre-Dame de Paris!
I dedicate the tetramagic cubes to Gaston Tarry and André Viricel.Gaston Tarry, inventor of the term "tetramagic", is the first man to have constructed a trimagic square, in 1905. It was of order 128. He is also the first man to have proved the famous Euler conjecture of the 36 officers. And my old friend André Viricel is the man who has invented a powerful method to construct trimagic squares of order 32. All my multimagic constructions are based on the ideas of Gaston Tarry (later improved by General Cazalas) and André Viricel, ideas simply enhanced to work with higher order and higher dimensions, cubes and hypercubes. Christian Boyer
An anecdote found in the book Carrés Magiques au degré n, by Général Cazalas, 1934. Page 13, in the preface written by Auguste Aubry, we read that Gaston Tarry was preparing "a panmagic and trimagic cube that he had not the time to achieve" before he died in 1913. There is alas no trace of this work!
The Général Cazalas, although smart enough to construct his 64th-order trimagic square, later failed in his attempt to construct a bimagic cube. It is interesting to note that it was precisely focused, like John-R. Hendricks and David M. Collison, on the order 25. Cazalas wrote in 1934 in Sphinx (pages 168-169): "... but the simplest bimagic cube is on the domain of the theory, because his order is too big: in a 25th-order cube, we even get only a very incomplete bimagic". So, John-R. Hendricks / David M. Collison proved to be more cunning than Cazalas!
Zhong Ming's perfect bimagic cubes of orders 16 and 25
Zhong Ming (on the right, with his son and his daughter in 2015)
The above bimagic cubes of orders 16 and 25 are bimagic, but not perfect bimagic. My smallest perfect bimagic cube was big: of order 32, constructed in 2003.
In April 2015, Zhong Ming succeeded in constructing perfect bimagic cubes of orders 16 and 25; they are the new smallest known perfect bimagic cubes! Zhong Ming is a mathematics teacher, at Sichuan Dazhou Daxian, Pavilion Town Center School of China.
The Golden Section (aka Golden Mean, and Golden Ratio) phys.org
We use math in architecture on a daily basis to solve problems. We use it to achieve both functional and aesthetic advantages. By applying math to our architectural designs through the use of the Golden Section and other mathematical principles, we can achieve harmony and balance. As you will see from some of the examples below, the application of mathematical principles can result in beautiful and long-lasting architecture which has passed the test of time.
Using Math in Architecture for Function and Form
We use math in architecture every day at our office. For example, we use math to calculate the area of a building site or office space. Math helps us to determine the volume of gravel or soil that is needed to fill a hole. We rely on math when designing safe building structures and bridges by calculating loads and spans. Math also helps us to determine the best material to use for a structure, such as wood, concrete, or steel.
“Without mathematics there is no art.” – Luca Pacioli, De divina proportione, 1509
Architects also use math when making aesthetic decisions. For instance, we use numbers to achieve attractive proportion and harmony. This may seem counter-intuitive, but architects routinely apply a combination of math, science, and art to create attractive and functional structures. One example of this is when we use math to achieve harmony and proportion by applying a well-known principle called the Golden Section
Math and Proportion – The Golden Section
Perfect proportions of the human body – The Vitruvian Man – by Leonardo da Vinci.
We tend to think of beauty as purely subjective, but that is not necessarily the case. There is a relationship between math and beauty. By applying math to our architectural designs through the use of the Golden Section and other mathematical principles, we can achieve harmony and balance.
The Golden Section is one example of a mathematical principle that is believed to result in pleasing proportions. It was mentioned in the works of the Greek mathematician Euclid, the father of geometry. Since the 4th century, artists and architects have applied the Golden Section to their work.
The Golden Section is a rectangular form that, when cut in half or doubled, results in the same proportion as the original form. The proportions are 1: the square root of 2 (1.414) It is one of many mathematical principles that architects use to bring beautiful proportion to their designs.
Examples of the Golden Section are found extensively in nature, including the human body. The influential author Vitruvius asserted that the best designs are based on the perfect proportions of the human body.
Over the years many well-known artists and architects, such as Leonardo da Vinci and Michelangelo, used the Golden Section to define the dimensions and proportions in their works. For example, you can see the Golden Section demonstrated in DaVinci’s painting Mona Lisa and his drawing Vitruvian Man.
Famous Buildings Influenced by Mathematical Principles
Here are some examples of famous buildings universally recognized for their beauty. We believe their architects used math and the principals of the Golden Section in their design:
The classical Doric columned Parthenon was built on the Acropolis between 447 and 432 BC. It was designed by the architects Iktinos and Kallikrates. The temple had two rooms to shelter a gold and ivory statue of the goddess Athena and her treasure. Visitors to the Parthenon viewed the statue and temple from the outside. The refined exterior is recognized for its proportional harmony which has influenced generations of designers. The pediment and frieze were decorated with sculpted scenes of Athena, the Gods, and heroes.
Built on the Ile de la Cite, Notre Dame was built on the site of two earlier churches. The foundation stone was laid by Pope Alexander III in 1163. The stone building demonstrates various styles of architecture, due to the fact that construction occurred for over 300 years. It is predominantly French Gothic, but also has elements of Renaissance and Naturalism. The cathedral interior is 427 feet x 157 feet in plan. The two Gothic towers on the west façade are 223 feet high. They were intended to be crowned by spires, but the spires were never built. The cathedral is especially loved for its three stained glass rose windows and daring flying buttresses. During the Revolution, the building was extensively damaged and was saved from demolition by the emperor Napoleon.
Built in Agra between 1631 and 1648, the Taj Mahal is a white marble mausoleum designed by Ustad-Ahmad Lahori. This jewel of Indian architecture was built by Emperor Shah Jahan in memory of his favorite wife. Additional buildings and elements were completed in 1653. The square tomb is raised and is dramatically located at the end of a formal garden. On the interior, the tomb chamber is octagonal and is surrounded by hallways and four corner rooms. Building materials are brick and lime veneered with marble and sandstone.
Taj Mahal designed by Ustad-Ahmad Lahori
As you can see from the above examples, the application of mathematical principles can result in some pretty amazing architecture. The architects’ work reflects eye-catching harmony and balance. Although these buildings are all quite old, their designs have pleasing proportions which have truly passed the test of time.
On March 19, 2109 The Galaxy reported that China was close to launching its “artificial sun” promising a future of ‘limitless clean energy –a Chinese “Green New Deal”. Unlike nuclear fission, fusion emits no greenhouse gases and carries less risk of accidents or the theft of atomic material.
Sometimes called an “artificial sun” for the sheer heat and power it produces, China’s doughnut-shaped Experimental Advanced Superconducting Tokamak (EAST) that juts out on a spit of land into a lake in eastern Anhui province, has notched up a succession of firsts, reports AFP. Officials announced that the machine which will hold the ‘artificial sun’, called the HL-2M Tokamak, could be built this year using nuclear fusion in which hydrogen from sea water and readily available lithium is heated to more than 150 million°C.
The current Experimental Advanced Superconducting Tokamak (EAST) reactor in Hefei has created temperatures as hot as the interior of the sun. In November, it became the first facility in the world to generate 100 million degrees Celsius (212 million Fahrenheit)—six times as hot as the sun’s core. These mind-boggling temperatures are crucial to achieving sustainable nuclear fusion reactions, which promise an inexhaustible energy source.
“The artificial sun’s plasma is mainly composed of electrons and ions and the country’s existing Tokamak devices have achieved an electron temperature of over 100 million degrees C in its core plasma, and an ion temperature of 50 million C, and it is the ion that generates energy in the device,” said Dr Duan Xuru, an official at the China National Nuclear Corporation, according to China’s Global Times.
HL-2M Tokamak is expected to increase the electricity intensity from one mega amperes to three mega amperes, an important step to achieve nuclear fusion, a spokesperson surnamed Liu with the press office of the Southwestern Institute of Physics (SWIP), affiliated with China National Nuclear Corporation, told the Global Times.
For instance, the deuterium (also known as heavy hydrogen) extracted from one liter of seawater releases the energy equivalent of burning 300 liters of gasoline in a complete fusion reaction, Liu said.
The “artificial sun” aims to release nuclear fusion in the same way as the sun by using deuterium and tritium (radioactive hydrogen-3), and finally generate electricity. It is clean energy that will not generate waste, which makes it ideal for people to use in the future, Liu said.
On March 19, 2109 The Galaxy reported that China was close to launching its “artificial sun” promising a future of ‘limitless clean energy –a Chinese “Green New Deal”. Unlike nuclear fission, fusion emits no greenhouse gases and carries less risk of accidents or the theft of atomic material.
The current Experimental Advanced Superconducting Tokamak (EAST) reactor in Hefei has created temperatures as hot as the interior of the sun. In November, it became the first facility in the world to generate 100 million degrees Celsius (212 million Fahrenheit)—six times as hot as the sun’s core. These mind-boggling temperatures are crucial to achieving sustainable nuclear fusion reactions, which promise an inexhaustible energy source.
“The artificial sun’s plasma is mainly composed of electrons and ions and the country’s existing Tokamak devices have achieved an electron temperature of over 100 million degrees C in its core plasma, and an ion temperature of 50 million C, and it is the ion that generates energy in the device,” said Dr Duan Xuru, an official at the China National Nuclear Corporation, according to China’s Global Times.
HL-2M Tokamak is expected to increase the electricity intensity from one mega amperes to three mega amperes, an important step to achieve nuclear fusion, a spokesperson surnamed Liu with the press office of the Southwestern Institute of Physics (SWIP), affiliated with China National Nuclear Corporation, told the Global Times.
For instance, the deuterium (also known as heavy hydrogen) extracted from one liter of seawater releases the energy equivalent of burning 300 liters of gasoline in a complete fusion reaction, Liu said.
The “artificial sun” aims to release nuclear fusion in the same way as the sun by using deuterium and tritium (radioactive hydrogen-3), and finally generate electricity. It is clean energy that will not generate waste, which makes it ideal for people to use in the future, Liu said.