Página principal  |  Contacto  

Correo electrónico:

Contraseña:

Registrarse ahora!

¿Has olvidado tu contraseña?

Secreto Masonico
 
Novedades
  Únete ahora
  Panel de mensajes 
  Galería de imágenes 
 Archivos y documentos 
 Encuestas y Test 
  Lista de Participantes
 EL SECRETO DE LA INICIACIÓN 
 Procesos Secretos del Alma 
 Estructura Secreta del Ritual Masónico 
 Los extraños Ritos de Sangre 
 Cámara de Reflexiones 
 
 
  Herramientas
 
General: SOLUCION DE LORENZ ("AGUJERO DE GUSANO")
Elegir otro panel de mensajes
Tema anterior  Tema siguiente
Respuesta  Mensaje 1 de 56 en el tema 
De: BARILOCHENSE6999  (Mensaje original) Enviado: 27/07/2015 01:19


Primer  Anterior  42 a 56 de 56  Siguiente   Último  
Respuesta  Mensaje 42 de 56 en el tema 
De: BARILOCHENSE6999 Enviado: 21/03/2021 12:51


Respuesta  Mensaje 43 de 56 en el tema 
De: BARILOCHENSE6999 Enviado: 25/12/2021 17:58


Respuesta  Mensaje 44 de 56 en el tema 
De: BARILOCHENSE6999 Enviado: 22/02/2022 03:03


Respuesta  Mensaje 45 de 56 en el tema 
De: BARILOCHENSE6999 Enviado: 01/12/2022 01:54
San Lorenzo (mártir) es venerado hoy 10 de agosto por las Iglesia Católica,  podría ser originario de Valencia, aunque oficialmente nació en Huesca - El  Valenciano

Respuesta  Mensaje 46 de 56 en el tema 
De: BARILOCHENSE6999 Enviado: 08/04/2023 11:24


Respuesta  Mensaje 47 de 56 en el tema 
De: BARILOCHENSE6999 Enviado: 10/12/2023 10:02


Respuesta  Mensaje 48 de 56 en el tema 
De: BARILOCHENSE6999 Enviado: 08/01/2024 01:43


Respuesta  Mensaje 49 de 56 en el tema 
De: BARILOCHENSE6999 Enviado: 09/08/2024 17:19

Cyclotron principle

edit
Diagram of cyclotron operation from Lawrence's 1934 patent. The hollow, open-faced D-shaped electrodes (left), known as dees, are enclosed in a flat vacuum chamber which is installed in a narrow gap between the two poles of a large magnet (right).Vacuum chamber of Lawrence 69 cm (27 in) 1932 cyclotron with cover removed, showing the dees. The 13,000 V RF accelerating potential at about 27 MHz is applied to the dees by the two feedlines visible at top right. The beam emerges from the dees and strikes the target in the chamber at bottom.

In a particle accelerator, charged particles are accelerated by applying an electric field across a gap. The force on a particle crossing this gap is given by the Lorentz force law:

�=�[�+(��)]{displaystyle mathbf {F} =q[mathbf {E} +(mathbf {v} 	imes mathbf {B} )]}

where q is the charge on the particle, E is the electric fieldv is the particle velocity, and B is the magnetic flux density. It is not possible to accelerate particles using only a static magnetic field, as the magnetic force always acts perpendicularly to the direction of motion, and therefore can only change the direction of the particle, not the speed.[30]

In practice, the magnitude of an unchanging electric field which can be applied across a gap is limited by the need to avoid electrostatic breakdown.[31]: 21  As such, modern particle accelerators use alternating (radio frequency) electric fields for acceleration. Since an alternating field across a gap only provides an acceleration in the forward direction for a portion of its cycle, particles in RF accelerators travel in bunches, rather than a continuous stream. In a linear particle accelerator, in order for a bunch to "see" a forward voltage every time it crosses a gap, the gaps must be placed further and further apart, in order to compensate for the increasing speed of the particle.[32]

A cyclotron, by contrast, uses a magnetic field to bend the particle trajectories into a spiral, thus allowing the same gap to be used many times to accelerate a single bunch. As the bunch spirals outward, the increasing distance between transits of the gap is exactly balanced by the increase in speed, so a bunch will reach the gap at the same point in the RF cycle every time.[32]

The frequency at which a particle will orbit in a perpendicular magnetic field is known as the cyclotron frequency, and depends, in the non-relativistic case, solely on the charge and mass of the particle, and the strength of the magnetic field:

�=��2��{displaystyle f={frac {qB}{2pi m}}}

where f is the (linear) frequency, q is the charge of the particle, B is the magnitude of the magnetic field that is perpendicular to the plane in which the particle is travelling, and m is the particle mass. The property that the frequency is independent of particle velocity is what allows a single, fixed gap to be used to accelerate a particle travelling in a spiral.[32]

Particle energy

edit

Each time a particle crosses the accelerating gap in a cyclotron, it is given an accelerating force by the electric field across the gap, and the total particle energy gain can be calculated by multiplying the increase per crossing by the number of times the particle crosses the gap.[33]

However, given the typically high number of revolutions, it is usually simpler to estimate the energy by combining the equation for frequency in circular motion:

�=�2��{displaystyle f={frac {v}{2pi r}}}

with the cyclotron frequency equation to yield:

�=����{displaystyle v={frac {qBr}{m}}}

The kinetic energy for particles with speed v is therefore given by:

�=12��2=�2�2�22�{displaystyle E={frac {1}{2}}mv^{2}={frac {q^{2}B^{2}r^{2}}{2m}}}

where r is the radius at which the energy is to be determined. The limit on the beam energy which can be produced by a given cyclotron thus depends on the maximum radius which can be reached by the magnetic field and the accelerating structures, and on the maximum strength of the magnetic field which can be achieved.[8]

K-factor

edit

In the nonrelativistic approximation, the maximum kinetic energy per atomic mass for a given cyclotron is given by:

��=(���max)22��(��)2=�(��)2{displaystyle {frac {T}{A}}={frac {(eBr_{max })^{2}}{2m_{a}}}left({frac {Q}{A}}
ight)^{2}=Kleft({frac {Q}{A}}
ight)^{2}}

where {displaystyle e} is the elementary charge, {displaystyle B} is the strength of the magnet, �max{displaystyle r_{max }} is the maximum radius of the beam, ��{displaystyle m_{a}} is an atomic mass unit{displaystyle Q} is the charge of the beam particles, and {displaystyle A} is the atomic mass of the beam particles. The value of K

�=(���max)22��{displaystyle K={frac {(eBr_{max })^{2}}{2m_{a}}}}

is known as the "K-factor", and is used to characterize the maximum kinetic beam energy of protons (quoted in MeV). It represents the theoretical maximum energy of protons (with Q and A equal to 1) accelerated in a given machine.[34]

Particle trajectory

edit
The trajectory followed by a particle in the cyclotron approximated with a Fermat's spiral

While the trajectory followed by a particle in the cyclotron is conventionally referred to as a "spiral", it is more accurately described as a series of arcs of constant radius. The particle speed, and therefore orbital radius, only increases at the accelerating gaps. Away from those regions, the particle will orbit (to a first approximation) at a fixed radius.[35]

Assuming a uniform energy gain per orbit (which is only valid in the non-relativistic case), the average orbit may be approximated by a simple spiral. If the energy gain per turn is given by ΔE, the particle energy after n turns will be:�(�)=�Δ�{displaystyle E(n)=nDelta E}Combining this with the non-relativistic equation for the kinetic energy of a particle in a cyclotron gives:�(�)=2�Δ����{displaystyle r(n)={{sqrt {2mDelta E}} over qB}{sqrt {n}}}This is the equation of a Fermat spiral.

Stability and focusing

edit

As a particle bunch travels around a cyclotron, two effects tend to make its particles spread out. The first is simply the particles injected from the ion source having some initial spread of positions and velocities. This spread tends to get amplified over time, making the particles move away from the bunch center. The second is the mutual repulsion of the beam particles due to their electrostatic charges.[36] Keeping the particles focused for acceleration requires confining the particles to the plane of acceleration (in-plane or "vertical"[a] focusing), preventing them from moving inward or outward from their correct orbit ("horizontal"[a] focusing), and keeping them synchronized with the accelerating RF field cycle (longitudinal focusing).[35]

Transverse stability and focusing

edit

The in-plane or "vertical"[a] focusing is typically achieved by varying the magnetic field around the orbit, i.e. with azimuth. A cyclotron using this focusing method is thus called an azimuthally-varying field (AVF) cyclotron.[37] The variation in field strength is provided by shaping the steel poles of the magnet into sectors[35] which can have a shape reminiscent of a spiral and also have a larger area towards the outer edge of the cyclotron to improve the vertical focus of the particle beam.[38] This solution for focusing the particle beam was proposed by L. H. Thomas in 1938[37] and almost all modern cyclotrons use azimuthally-varying fields.[39]

The "horizontal"[a] focusing happens as a natural result of cyclotron motion. Since for identical particles travelling perpendicularly to a constant magnetic field the trajectory curvature radius is only a function of their speed, all particles with the same speed will travel in circular orbits of the same radius, and a particle with a slightly incorrect trajectory will simply travel in a circle with a slightly offset center. Relative to a particle with a centered orbit, such a particle will appear to undergo a horizontal oscillation relative to the centered particle. This oscillation is stable for particles with a small deviation from the reference energy.[35]

Longitudinal stability

edit

The instantaneous level of synchronization between a particle and the RF field is expressed by phase difference between the RF field and the particle. In the first harmonic mode (i.e. particles make one revolution per RF cycle) it is the difference between the instantaneous phase of the RF field and the instantaneous azimuth of the particle. Fastest acceleration is achieved when the phase difference equals 90° (modulo360°).[35]: ch.2.1.3  Poor synchronization, i.e. phase difference far from this value, leads to the particle being accelerated slowly or even decelerated (outside of the 0–180° range).

As the time taken by a particle to complete an orbit depends only on particle's type, magnetic field (which may vary with the radius), and Lorentz factor (see § Relativistic considerations), cyclotrons have no longitudinal focusing mechanism which would keep the particles synchronized to the RF field. The phase difference, that the particle had at the moment of its injection into the cyclotron, is preserved throughout the acceleration process, but errors from imperfect match between the RF field frequency and the cyclotron frequency at a given radius accumulate on top of it.[35]: ch.2.1.3  Failure of the particle to be injected with phase difference within about ±20° from the optimum may make its acceleration too slow and its stay in the cyclotron too long. As a consequence, half-way through the process the phase difference escapes the 0–180° range, the acceleration turns into deceleration, and the particle fails to reach the target energy. Grouping of the particles into correctly synchronized bunches before their injection into the cyclotron thus greatly increases the injection efficiency.[35]: ch.7

Relativistic considerations

edit

In the non-relativistic approximation, the cyclotron frequency does not depend upon the particle's speed or the radius of the particle's orbit. As the beam spirals outward, the rotation frequency stays constant, and the beam continues to accelerate as it travels a greater distance in the same time period. In contrast to this approximation, as particles approach the speed of light, the cyclotron frequency decreases due to the change in relativistic mass. This change is proportional to the particle's Lorentz factor.[30]: 6–9

The relativistic mass can be written as:

�=�01−(��)2=�01−�2=��0,{displaystyle m={frac {m_{0}}{sqrt {1-left({frac {v}{c}}
ight)^{2}}}}={frac {m_{0}}{sqrt {1-eta ^{2}}}}=gamma {m_{0}},}

where:

  • �0{displaystyle m_{0}} is the particle rest mass,
  • �=��{displaystyle eta ={frac {v}{c}}} is the relative velocity, and
  • �=11−�2=11−(��)2{displaystyle gamma ={frac {1}{sqrt {1-eta ^{2}}}}={frac {1}{sqrt {1-left({frac {v}{c}}
ight)^{2}}}}} is the Lorentz factor.[30]: 6–9

Substituting this into the equations for cyclotron frequency and angular frequency gives:

�=��2���0�=����0{displaystyle {egin{aligned}f&={frac {qB}{2pi gamma m_{0}}}[6pt]omega &={frac {qB}{gamma m_{0}}}end{aligned}}}

The gyroradius for a particle moving in a static magnetic field is then given by:[30]: 6–9 �=���0���=��0���=�0���−2−�−2{displaystyle r={frac {gamma eta m_{0}c}{qB}}={frac {gamma m_{0}v}{qB}}={frac {m_{0}}{qB{sqrt {v^{-2}-c^{-2}}}}}}

Expressing the speed in this equation in terms of frequency and radius�=2���{displaystyle v=2pi fr}yields the connection between the magnetic field strength, frequency, and radius:(12��)2=(�0��)2+(��)2{displaystyle left({frac {1}{2pi f}}
ight)^{2}=left({frac {m_{0}}{qB}}
ight)^{2}+left({frac {r}{c}}
ight)^{2}}


Respuesta  Mensaje 50 de 56 en el tema 
De: BARILOCHENSE6999 Enviado: 24/09/2024 03:05

St. Lorenz, Nuremberg

Appearance
 
Text
Width
Color (beta)
From Wikipedia, the free encyclopedia
 
St. Lorenz
St Lawrence
West facade of the St Lorenz
Religion
Affiliation Evangelical Lutheran Church in Bavaria
Ecclesiastical or organizational status Parish Church
Location
Location Nuremberg, Germany
Architecture
Type Church
Style Gothic
Groundbreaking 1250
Completed 1477
Specifications
Direction of façade W
Length 91.2m
Width 30.0m
Width (nave) 10.4m
Height (max) 81m

St. Lorenz (St. Lawrence) is a medieval church of the former free imperial city of Nuremberg in southern Germany. It is dedicated to Saint Lawrence by the Roman Catholic Church. The church was badly damaged during the Second World War and later restored. It is one of the most prominent churches of the Evangelical Lutheran Church in Bavaria.

Architecture

[edit]

The nave of the church was completed by around 1400. In 1439, work began on the choir in the form of a hall church in the late German Sondergotik style of Gothic architecture. The choir was largely completed by 1477 by Konrad Roriczer,[1] although Jakob Grimm completed the intricate vaults.

In the choir one can find the carving of the Angelic Salutation by Veit Stoss, and the monumental tabernacle by Adam Kraft. The latter includes a prominent figure of the sculptor himself.

The building and furnishing of the church was cared for by the city council and by wealthy citizens. This is probably the reason why the art treasures of St. Lawrence were spared during the iconoclasm during the Reformation period. Despite St. Lawrence being one of the first churches in Germany to be Lutheran (1525), the wealthy citizens of Nuremberg wanted to preserve the memory of their ancestors and refused the removal of the donated works of art.

The west facade is richly articulated, reflecting the wealth of the Nuremberg citizens. The facade is dominated by the two towers, mirroring St. Sebald and indirectly Bamberg Cathedral with a sharp towering West portal doorway, and an indented rose window 9 metres in diameter.

Organs

[edit]
The hall choir including the sacrament house by Adam Kraft

The church has three organs.

  • Main organ. Steinmeyer, Oettingen, 1937 rebuilt by Klais Orgelbau, Bonn, 2003. 5 manuals
  • Stephans Organ. Steinmeyer op. 34 from 1862 formerly in the Evangelical Lutherin Church, Hersbruck, Restored in 2002 by Klais Orgelbau, Bonn. 2 manual
  • Laurentius Organ. Klais Orgelbau, Bonn 2005. 3 manual.

 

Organists of St. Lorenz

[edit]

The church has employed organists for over 500 years, many of them prominent musicians within Bavaria. Amongst the famous names are the following:

  • Nicholas Pair (Bayer) ca. 1448
  • Hans Seber 1510 - 1517
  • Hans Feller 1517 - 1525
  • Interregnum from 1525
  • Georg Nötteleins ???? - 1565
  • Paulus Lautensack 1565 - 1571
  • Wilhelm Ende 1571 - 1581
  • Kasper Hassler 1587 - 1616
  • Johann Staaten 1611 - 1618[2]
  • Valentin Dretzel 1618 - 1634
  • Sigmund Theophil Staden 1634 - 1655
  • Albrect Martin Lunßdörffer 1688 - 1694
  • Johann Löhner 1694 - 1705[3]
  • Wolfgang Förtsch 1705 - 1743
  • Cornelius Heinrich Dretzel 1743 - 1764
  • Johann Siebenkees 1764 - 1772
  • Johann Gottlieb Frör 1814 - 1823
  • Georg Friedrich Herrscher 1843 - 1870
  • Carl Christian Mattäus 1871 - 1914
  • Carl Böhm 1913 - 1917
  • Walther Körner 1918 - 1962

Respuesta  Mensaje 51 de 56 en el tema 
De: BARILOCHENSE6999 Enviado: 24/09/2024 03:15
Lorenz Equations Chaos Butterfly Physics Math Teacher Nerdy T-Shirt

Respuesta  Mensaje 52 de 56 en el tema 
De: BARILOCHENSE6999 Enviado: 24/09/2024 03:48
Lecture 1 - Magnetic Lorentz force and Cyclotron motion

Respuesta  Mensaje 53 de 56 en el tema 
De: BARILOCHENSE6999 Enviado: 24/09/2024 03:51
Lecture15_Hall_effect.pdf

Respuesta  Mensaje 54 de 56 en el tema 
De: BARILOCHENSE6999 Enviado: 24/09/2024 03:56
Medical application of proton accelerators - ppt video online download

Respuesta  Mensaje 55 de 56 en el tema 
De: BARILOCHENSE6999 Enviado: 07/10/2024 03:53
Physics Gang Sign Lorenz Force F=IxB Electric Current I Magnetic Field B:  120 Pages I 6x9 I Blank I Funny Pickleball Gifts for Sport Enthusiasts

Respuesta  Mensaje 56 de 56 en el tema 
De: BARILOCHENSE6999 Enviado: 27/10/2024 17:40
Excitement in the Crypto World: DeLorean’s NFT Commercial with a Canine Star

Emoción en el Mundo Cripto: El Comercial de NFT de DeLorean con una Estrella Canina

2024-10-13

En una fascinante intersección de cine, automóviles y criptomonedas, un anuncio de NFT que presenta el icónico DeLorean ha llamado la atención debido a su inesperada inclusión de un Shiba Inu. Christopher Lloyd, conocido por su legendario papel en la franquicia «Regreso al futuro», presta su estrella a este comercial único, que ha causado revuelo dentro de la comunidad cripto.

Shytoshi Kusama, el destacado desarrollador detrás del proyecto Shiba Inu, compartió su entusiasmo por el comercial en plataformas de redes sociales. Enfatizó la importancia de esta colaboración, viéndola como un hito en el reconocimiento mainstream de la marca Shiba Inu. El anuncio del DeLorean no solo entretiene, sino que también vincula la nostalgia automovilística clásica con el emergente mundo de los activos digitales.

Central al comercial está la colección de NFT DeLorean Time Capsule, que marca la incursión de la empresa en la tecnología blockchain. Acuñados en la blockchain de Sui, estos NFT comprenden 8,800 coleccionables únicos, atrayendo a los participantes con la oportunidad de ganar varios premios, incluyendo un innovador vehículo eléctrico DeLorean.

La campaña de NFT muestra el compromiso de DeLorean de fusionar el legado automovilístico tradicional con experiencias digitales modernas. A medida que el interés sigue creciendo, el proyecto inició su proceso de acuñación en la conferencia Token2049 de este año. Con más oportunidades de acuñación programadas para los próximos meses, la anticipación que rodea esta iniciativa permanece alta, resonando bien tanto con entusiastas de cripto como con aficionados a los automóviles.

Desbloqueando el Futuro: Consejos y Datos Inspirados en la Revolución NFT de DeLorean

El reciente revuelo en torno al anuncio de NFT de DeLorean ha capturado la atención de entusiastas automovilísticos y defensores de las criptomonedas. Con la ingeniosa combinación de nostalgia, innovación y cultura pop, esta campaña ofrece valiosas ideas y trucos de vida para cualquiera que busque navegar el paisaje en evolución de los activos digitales y coleccionables. Aquí hay algunos consejos, trucos de vida y datos fascinantes para enriquecer tu comprensión e involucramiento con esta emocionante tendencia.

1. Adopta la Tendencia de los NFT
A medida que los NFT continúan proliferando, no hay mejor momento para sumergirse en el mundo de los coleccionables digitales. Investiga plataformas como OpenSea o Rarible para entender los tipos de NFT disponibles. Familiarízate con términos como «acuñación», «tarifas de gas» y «contratos inteligentes» para navegar efectivamente por este nuevo terreno.

2. Combina Pasión con Inversión
Al igual que el DeLorean, que une recuerdos nostálgicos con tecnología moderna, considera invertir en NFT que resuenen con tus pasiones. Ya sea arte, música o automóviles vintage, alinear tus inversiones con tus intereses puede hacer que la experiencia sea más gratificante.

3. Involúcrate con la Comunidad
Sigue a influenciadores clave en el espacio de NFT y criptomonedas en plataformas como Twitter y Discord. Involucrarse con una comunidad puede proporcionar conocimientos, apoyo y conocimientos que son invaluables mientras exploras nuevos proyectos y oportunidades.

4. Mantente Informado sobre Eventos de Acuñación Futuros
La acuñación de la campaña de NFT de DeLorean comenzó en Token2049, destacando la importancia del tiempo. Mantén un ojo en eventos de la industria o lanzamientos en plataformas como CoinTelegraph y The Block para los últimos anuncios sobre nuevos NFT o proyectos de blockchain.

5. Experimenta con Diferentes Blockchains
Los NFT DeLorean Time Capsule están acuñados en la blockchain de Sui, demostrando que no todos los NFT son creados iguales. Explora varias blockchains como Ethereum, Solana y Tezos para encontrar las características únicas y los beneficios que ofrecen, así como el apoyo de la comunidad que las rodea.

6. Aprovecha la Gamificación
Muchos proyectos de NFT ahora incorporan elementos de gamificación, como misiones o recompensas para primeros adoptantes. Mantente activo y participa en estos programas, ya que a menudo ofrecen beneficios no disponibles para observadores pasivos.

7. Protégete con Conocimiento
Como con cualquier inversión, el conocimiento es poder. Edúcate sobre las trampas comunes de invertir en NFT y criptomonedas, incluidos fraudes y volatilidad del mercado. Sigue fuentes creíbles para las últimas noticias y tendencias.

Datos Interesantes para Recordar
– El coche DeLorean no solo es famoso por su papel cinematográfico en «Regreso al futuro», sino también por su diseño único y sus icónicas puertas de ala de gaviota, lo que lo convierte en un vehículo atemporal amado por muchos.
– La criptomoneda Shiba Inu, a menudo considerada una moneda meme, ha ganado un serio impulso y reconocimiento, en parte gracias a su naturaleza impulsada por la comunidad y asociaciones como la que tiene con DeLorean.
– La oferta total de NFT de vehículos eléctricos DeLorean clásicos en esta promoción es de 8,800, mostrando una escasez selectiva que a menudo impulsa el interés en artículos coleccionables.

Al seguir estos consejos y tener en cuenta estos datos, puedes mejorar tu experiencia en el emocionante ámbito de los NFT y coleccionables digitales. Como demuestra el comercial de DeLorean, la intersección de la cultura, la tecnología y la inversión puede abrir nuevas puertas a la innovación y la emoción. Para más información sobre el mundo de la tecnología y las inversiones, visita TechCrunch.

The source of the article is from the blog xn--campiahoy-p6a.es

https://bitperfect.pe/es/emocion-en-el-mundo-cripto-el-comercial-de-nft-de-delorean-con-una-estrella-canina/


Primer  Anterior  42 a 56 de 56  Siguiente   Último  
Tema anterior  Tema siguiente
 
©2024 - Gabitos - Todos los derechos reservados