Correo electrónico:

Contraseña:

Registrarse ahora!

¿Has olvidado tu contraseña?

Secreto Masonico
 
Novedades
  Únete ahora
  Panel de mensajes 
  Galería de imágenes 
 Archivos y documentos 
 Encuestas y Test 
  Lista de Participantes
 EL SECRETO DE LA INICIACIÓN 
 Procesos Secretos del Alma 
 Estructura Secreta del Ritual Masónico 
 Los extraños Ritos de Sangre 
 Cámara de Reflexiones 
 
 
  Herramientas
 
General: SALMO 119 (APOCALIPSIS 1:8 Y 22:12)=PATRON CIENTIFICO DE CUALQUIER TIPO DE ONDA
Elegir otro panel de mensajes
Tema anterior  Tema siguiente
Respuesta  Mensaje 1 de 163 en el tema 
De: BARILOCHENSE6999  (Mensaje original) Enviado: 08/05/2015 15:23


Primer  Anterior  2 a 13 de 163  Siguiente   Último 
Respuesta  Mensaje 2 de 163 en el tema 
De: BARILOCHENSE6999 Enviado: 08/05/2015 15:23
APOCALIPSIS 1:8 Y 22:16 FUERTEMENTE RELACIONADO CON LA VELOCIDAD Y LA ACELERACION ANGULAR (FUERTE RELACION CON LA TRANSFIGURACION DE CRISTO)
 

RADIAN / DIANA / DINA / DAN / TRANSFIGURACION

ARCO ALFA OMEGA

ES OBVIA LA RELACION CON EL MOVIMIENTO CIRCULAR, OSEA VOLVEMOS CON EL CIRCULO Y SU RELACION CON EL INFINITO. TODOS CODIGOS DE LA TRANSFIGURACION DE CRISTO. ESTE PATRON MATEMATICO ES UNIVERSAL, EN TODAS LAS ONDAS DE CUALQUIER TIPO, YA SEAN DE CORRIENTE, TENSION, ONDAS ELECTRO MAGNECIAS, DE SONIDO, ETC,ETC

 

 

 
 

Movimiento circular

De Wikipedia, la enciclopedia libre
 
Movimiento circular.

En cinemática, el movimiento circular (también llamado movimiento circunferencial) es el que se basa en un eje de giro y radio constante, por lo cual la trayectoria es una circunferencia. Si además, la velocidad de giro es constante (giro ondulatorio), se produce el movimiento circular uniforme, que es un caso particular de movimiento circular, con radio y centro fijos y velocidad angular constante.

 

 

Conceptos[editar]

En el movimiento circular hay que tener en cuenta algunos conceptos que serían básicos para la descripción cinemática y dinámica del mismo:

  • Eje de giro: es la línea recta alrededor de la cual se realiza la rotación, este eje puede permanecer fijo o variar con el tiempo pero para cada instante concreto es el eje de la rotación (considerando en este caso una variación infinitesimal o diferencial de tiempo). El eje de giro define un punto llamado centro de giro de la trayectoria descrita (O).
  • Arco: partiendo de un centro fijo o eje de giro fijo, es el espacio recorrido en la trayectoria circular o arco de radio unitario con el que se mide el desplazamiento angular. Su unidad es el radián (espacio recorrido dividido entre el radio de la trayectoria seguida, división de longitud entre longitud, adimensional por tanto).
  • Velocidad angular: es la variación del desplazamiento angular por unidad de tiempo (omega minúscula, omega).
  • Aceleración angular: es la variación de la velocidad angular por unidad de tiempo (alfa minúscula, alpha).

En dinámica de los movimientos curvilíneos, circulares y/o giratorios se tienen en cuenta además las siguientes magnitudes:

  • Momento angular (L): es la magnitud que en el movimiento rectilíneo equivale al momento lineal o cantidad de movimiento pero aplicada al movimiento curvilíneo, circular y/o giratorio (producto vectorial de la cantidad de movimiento por el vector posición, desde el centro de giro al punto donde se encuentra la masa puntual).
  • Momento de inercia (I): es una cualidad de los cuerpos que depende de su forma y de la distribución de su masa y que resulta de multiplicar una porción concreta de la masa por la distancia que la separa al eje de giro.
  • Momento de fuerza (M): o par motor es la fuerza aplicada por la distancia al eje de giro (es el equivalente a la fuerza agente del movimiento que cambia el estado de un movimiento rectilíneo).

Paralelismo entre el movimiento rectilíneo y el movimiento circular[editar]

Movimiento
LinealAngular
Posición Arco
Velocidad Velocidad angular
Aceleración Aceleración angular
Masa Momento de inercia
Fuerza Momento de fuerza
Momento lineal Momento angular
Moviment circular.jpg

A pesar de las diferencias evidentes en su trayectoria, hay ciertas similitudes entre el movimiento rectilíneo y el circular que deben mencionarse y que resaltan las similitudes y equivalencias de conceptos y un paralelismo en las magnitudes utilizadas para describirlos. Dado un eje de giro y la posición de una partícula puntual en movimiento circular o giratorio, para una variación de tiempo Δt o un instante dt, dado, se tiene:

Arco descrito o desplazamiento angular[editar]

Arco angular o desplazamiento angular es el arco de la circunferencia recorrido por la masa puntual en su trayectoria circular, medido en radianes y representado con la letras griegas varphi, (phi) o 	heta, (theta). Este arco es el desplazamiento efectuado en el movimiento circular y se obtiene mediante la posición angular (varphi_p ó 	heta_p) en la que se encuentra en un momento determinado el móvil y al que se le asocia un ángulo determinado en radianes. Así el arco angular o desplazamiento angular se determinará por la variación de la posición angular entre dos momentos final e inicial concretos (dos posiciones distintas):

Deltavarphi = varphi_f - varphi_o qquad mbox{ó} qquad Delta	heta = 	heta_f - 	heta_o

Siendo Deltavarphi ó Delta	heta el arco angular o desplazamiento angular dado en radianes.


Si se le llama e, al espacio recorrido a lo largo de la trayectoria curvilínea de la circunferencia de radio R, se tiene que es el producto del radio de la trayectoria circular por la variación de la posición angular (desplazamiento angular):

    e = RDeltavarphi = R(varphi_f - varphi_o) qquad mbox{ó} qquad s = RDelta	heta = R(	heta_f - 	heta_o)

En ocasiones se denomina s, al espacio recorrido (del inglés "space"). Nótese que al multiplicar el radio por el ángulo en radianes, al ser estos últimos adimensionales (arco entre radio), el resultado es el espacio recorrido en unidades de longitud elegidas para expresar el radio.

Velocidad angular y velocidad tangencial[editar]

  • Velocidad angular es la variación del arco angular o posición angular respecto al tiempo. Es representada con la letra omega, (omega minúscula) y viene definida como:
omega = lim_{Delta t	o 0}frac{Delta varphi}{Delta t} = lim_{Delta t	o 0}frac{varphi_f - varphi_o}{t_f - t_o} qquad mbox{ ó } qquad omega = frac{d varphi}{d t}

Siendo la segunda ecuación la de la velocidad angular instantánea (derivada de la posición angular con respecto del tiempo).

  • Velocidad tangencial de la partícula es la velocidad del objeto en un instante de tiempo (magnitud vectorial con módulo, dirección y sentido determinados en ese instante estudiado). Puede calcularse a partir de la velocidad angular. Si  v_t es el módulo la velocidad tangencial a lo largo de la trayectoria circular de radio R, se tiene que:

 v_t = omega,R

Aceleración angular y tangencial[editar]

La aceleración angular es la variación de la velocidad angular por unidad de tiempo y se representa con la letra: alpha, y se la calcula:

 alpha = frac{d omega }{d t}

Si at es la aceleración tangencial, a lo largo de la circunferencia de radio R, se tiene que:

 a_t = R , alpha ;

Período y frecuencia[editar]

El período indica el tiempo que tarda un móvil en dar una vuelta a la circunferencia que recorre. Se define como:

T=frac{2pi}{omega}

La frecuencia es la inversa del periodo, es decir, las vueltas que da un móvil por unidad de tiempo. Se mide en hercios o s-1

f=frac{1}{T}=frac{omega}{2pi}

Aceleración y fuerza centrípeta[editar]

Mecánica clásica[editar]

La aceleración centrípeta, también llamada normal o radial, afecta a un móvil siempre que éste realiza un movimiento circular, ya sea uniforme o acelerado. Se define como:

a_c = a_n = frac{v^2_t}{R}=omega^2R

La fuerza centrípeta es la fuerza que produce en la partícula la aceleración centrípeta. Dada la masa del móvil, y basándose en la segunda ley de Newton (vec {F} = m vec {a}) se puede calcular la fuerza centrípeta a la que está sometido el móvil mediante la siguiente relación:

F_c=ma_c=frac{mv^2}{R}=momega^2R

Mecánica relativista[editar]

En mecánica clásica la aceleración y la fuerza en un movimiento circular siempre son vectores paralelos, debido a la forma concreta que toma la segunda ley de Newton. Sin embargo, en relatividad especial la aceleración y la fuerza en un movimiento circular no son vectores paralelos a menos que se trate de un movimiento circular uniforme. Si el ángulo formado por la velocidad en un momento dado es scriptstyle alpha entonces el ángulo scriptstyle eta formado por la fuerza y la aceleración es:

cos eta = frac{1+cfrac{v^2}{c^2}(1-cos^2alpha)}{sqrt{left(1+cfrac{v^2}{c^2}(1-cos^2alpha) ight)^2+cfrac{v^4}{c^4}cos^2alphasin^2alpha}}

Para el movimiento rectilineo se tiene que scriptstyle sin alpha = 0 y por tanto scriptstyle eta = 0 y para el movimiento circular uniforme se tiene scriptstyle cos alpha = 0 y por tanto también scriptstyle eta = 0. En el resto de casos scriptstyle eta  e 0. Para velocidades muy pequeñas y ángulos expresados en radianes se tiene:

eta approx frac{v^2}{c^2} cosalpha sinalpha + Oleft(frac{v^4}{c^4} ight)


Respuesta  Mensaje 3 de 163 en el tema 
De: BARILOCHENSE6999 Enviado: 24/05/2015 16:15

en.wikipedia.org
Chi Rho
774 × 1024 - 47k - png

commons.wikimedia.org
File:Chi Rho.svg
793 × 1122 - 10k - svg

dmpc.org
Chi-Rho Youth Group
300 × 269 - 18k - jpg

clker.com
Download this image as:
600 × 600 - 29k - png

cyberspaceorbit.com
chirho.gif
327 × 291 - 3k - gif

windstarembroidery.com
Chi Rho Alpha & Omega #2
300 × 325 - 9k - gif

paideiaclassicalchrist...
Paideia Chi-Rho
348 × 522 - 20k - jpg

commons.wikimedia.org
File:Chirho.svg
740 × 900 - 5k - svg

commons.wikimedia.org
File:Chi rho 2 wiki.jpg
896 × 888 - 42k - jpg

wcuccm.blogspot.com
WCU Catholic Campus Ministry
250 × 244 - 2k - gif

pinterest.com
The Chi Rho is one of the
236 × 236 - 7k - jpg

pinstopin.com
Chi Rho
259 × 261 - 18k - gif

facepunch.com
/albums/u...os/chi-rho.jpg
450 × 650 - 17k - jpg

seiyaku.com
Chi-rho
70 × 100 - 3k - png

pinterest.com
More
1600 × 1600 - 1635k - jpg

jesuswalk.com
of the Chi-Rho monogram.
384 × 389 - 41k - jpg

smp.org
View LargePrint
960 × 961 - 325k - jpg

darkbrownhairs.co
Chi Rho Symbol
800 × 959 - 33k

whale.to
The Chi Rho with a wreath
450 × 600 - 45k - jpg

chirho.weebly.com
Rush Chi-Rho.
250 × 304 - 70k - png
Búsquedas relacionadas con CHI-RHO

chi-rho significado

las manos de dios

chi-rho tattoo

 

 
C=VELOCIDAD DE LA LUZ
 
R=RELATIVIDAD DE EINSTEIN= "OJO DE RA" (RA-QUEL)= BENJAMIN

Respuesta  Mensaje 4 de 163 en el tema 
De: BARILOCHENSE6999 Enviado: 29/05/2015 18:29

Respuesta  Mensaje 5 de 163 en el tema 
De: BARILOCHENSE6999 Enviado: 29/05/2015 18:30

Respuesta  Mensaje 6 de 163 en el tema 
De: BARILOCHENSE6999 Enviado: 31/05/2015 14:45

andersoninstitute.com
Time-warped Field Time Control
1024 × 768 - 180k - jpg

peswiki.com
Image:Time-
600 × 381 - 29k - jpg

andersoninstitute.com
The Anderson Time Reactor
320 × 207 - 20k - jpg

andersoninstitute.com
Time Control Technologies and
1024 × 768 - 177k - jpg

exohuman.com
An error occurred.
970 × 612 - 96k - jpg

andersoninstitute.com
a premier high technology
195 × 137 - 8k - jpg

dailygalaxy.com
An Alcubierre Warp Drive
1024 × 768 - 158k

en.wikipedia.org
Warp drive
606 × 606 - 191k - png

extremetech.com
that warp bubbles can't
1195 × 898 - 206k - jpg

21stcentech.com
A Warp Engine is really a time
400 × 404 - 40k - gif

en.wikipedia.org
White–Juday warp-field
1101 × 826 - 781k - png

exohuman.com
More: A little backstory.
597 × 324 - 59k - jpg

gizmag.com
The warp drive broke away from
530 × 297 - 35k - jpg

youtube.com
Time-Warp Field Technology
480 × 360 - 8k - jpg

andersoninstitute.com
A number of interesting
1024 × 768 - 140k - jpg

fractalfield.com
Time Reversal Field Tech-
1531 × 1052 - 614k - jpg

gizmag.com
NASA's White-Juday Warp Field
529 × 416 - 21k - jpg

en.wikipedia.org
Surface plots of York time
1193 × 469 - 500k - png

thescienceofsciencefic...
This warp drive creates a warp
1100 × 627 - 204k - jpg

nextbigfuture.com
Space Warp equations are being
1079 × 762 - 1676k - png

Respuesta  Mensaje 7 de 163 en el tema 
De: BARILOCHENSE6999 Enviado: 31/05/2015 14:48
 

Time-warped Fields

An Overview and Comparison by Dr. David Lewis Anderson

 

Time-warped Fields use energy within curvatures of spacetime surrounding a rotating mass or energy field to generate containable and controllable fields of closed-timelike curves that can move matter and information forward or backward in time.

Time-warped Field Time Control and Time Travel

David Lewis Anderson
David Lewis Anderson, USAF
Officer and Scientist, founder
of time-warped field theory.
As general relativity predicts, rotating bodies drag spacetime around themselves in a phenomenon referred to as frame-dragging. This rotational frame-dragging effect is also known as the Lense-Thirring effect. The rotation of an object alters space and time, dragging a nearby object out of position compared to the predictions of Newtonian physics. The predicted effect is small—about one part in a few trillion.

However, as Dr. David Lewis Anderson proposed in 1987 with his announcement of time-warped field theory, the difference in potential energy between two different areas of twisted spacetime due to frame-dragging is significantly large.  Even the smallest twist in spacetime contains enormous energy potential and can be used to create containable and controllable fields of close-timelike curves without the need for significant input power. This makes both forward and reverse time control possible within the limits of technology today.

The key characteristics of the application of time-warped fields for time control and time travel are presented in the picture below. This is followed by more detail describing the science below.

Time-warped Fields Time Control and Time Travel

Frame Dragging Effect Basics

Time Warp Field Theory
The Anderson Time Reactor operates by accessing the high energy
potential and effects, existing across two regions of twisted spacetime,
to create containable and controllable fields of closed-timelike curves.
Rotational frame-dragging appears in the general principle of relativity and similar theories in the vicinity of rotating massive objects. Under this effect, the frame of reference in which a clock ticks the fastest is one which is rotating around the object as viewed by a distant observer. This also means that light traveling in the direction of rotation of the object will move around the object faster than light moving against the rotation as seen by a distant observer. It is now the best-known effect, partly thanks to the Gravity Probe B experiment.

Linear frame dragging is the similarly inevitable result of the general principle of relativity, applied to linear momentum. Although it arguably has equal theoretical legitimacy to the "rotational" effect, the difficulty of obtaining an experimental verification of the effect means that it receives much less discussion and is often omitted from articles on frame-dragging

Static mass increase is another effect. The effect is an increase in inertia of a body when other masses are placed nearby. While not strictly a frame dragging effect, it is also derived from the same equation of general relativity. It is a tiny effect that is difficult to confirm experimentally.

Mathematical Derivation of Frame Dragging

Frame-dragging may be illustrated most readily using the Kerr metric, which describes the geometry of spacetime in the vicinity of a mass M rotating with angular momentum J




where rs is the Schwarzschild radius



and where the following shorthand variables have been introduced for brevity



In the non-relativistic limit where M (or, equivalently, rs) goes to zero, the Kerr metric becomes the orthogonal metric for the oblate spheroidal coordinates



We may re-write the Kerr metric in the following form



This metric is equivalent to a co-rotating reference frame that is rotating with angular speed Ω that depends on both the radius r and the colatitude θ



In the plane of the equator this simplifies to:



Thus, an inertial reference frame is entrained by the rotating central mass to participate in the latter's rotation; this is frame-dragging. Frame-dragging occurs about every rotating mass and at every radius r and colatitude θ.

The Anderson Time Reactor

The Anderson Spacetime Battery
Twisted spacetime around the earth, or
any rotating body, contains enormous
levels of potential energy. This is due
to the tension in the fabric of spacetime
caused by inertial frame-dragging.

Time-warped field theory shows how a properly configured energy beam can be used to initiate and maintain the coupling of two different areas of slightly twisted spacetime. This enables the discharge of significantly greater levels of stored potential energy and generates controllable fields of closed-timelike curves. The system that couples these two regions of different spacetime potential is common referred to as an Anderson Time Reactor or spacetime battery.

The Anderson Time Reactor is a system that couples two different areas of twisted spacetime, with two different spacetime tensions. The system can access and create a conduit to harvest that stored energy and through the coupling process create dense fields of Closed Timelike Curves (CTCs).

A reactor consists of a region of spacetime, large or small, surrounding a rotating mass, where inertial frame dragging effects are present twisting spacetime between two regions of space.
David Lewis Anderson
David Lewis Anderson
A specialized beam emitter, with a localized source nearer to the rotating mass, is directed toward a more distant region of space, across the region of twisted spacetime created by inertial frame-dragging.

A series of power collectors near and surrounding the beam emitter provide a conduit to then channel and control the received power. The resulting effect is that the potential energy in the twisted fabric of spacetime is coupled or bridged from the distant point to the local power collector array. The entire process is initiated and controlled by the system.

The Anderson Time Reactor system achieves this by using the application of Time-warped Field theory to create the ability to leak, tap into and control the greater energy stored in this spacetime tension (or energy potential difference), in between the distant point and the localized point in spacetime.

In the most basic terms, the Time Reactor can be looked at as a simple spacetime battery, accessing the significant potential energy that existing around any rotating body anywhere in spacetime.

Spacetime-Motive Force

Visualization of energy pattern near time reactor
Spectral image of energy pattern
near time reactor emitter and power
collector array showing coupling
and discharge of spacetime-motive
force including energy drift in the
direction of inertial frame dragging
of the Earth. USA, 2008
The coupling of these two points accesses what Dr. Anderson labeled a "spacetime-motive force" with the ability to produce high energy and time-warped fields allowing the containment and controlling of fields of closed-timelike curves.

The force between the localized and distant point is called the open spacetime-motive force. The open spacetime-motive force, even in the minimal effects of inertial frame-dragging, can be extremely large by present-day power generation standard standards. It is estimated that a single next-generation time reactor may have the ability to produce more than all of the worlds combined power generation capabilities today.

The amount of spacetime motive force depends on several factors. These include the mass of the rotating body, its rotation speed, relative orientation of the two point to the axis of rotation, and the medium and distance between the localized and distant points in space. More simply, it is a function of the degree of inertial frame-dragging and the characteristics of the medium through which the Time Reactor must operate between the two regions to open a "discharge path." Also, the amount of energy that is accessed, or time-warped fields generated, can be controlled in several ways through phasing and other characteristics of the emitter and power collector array.

A Practical Approach to Achieving Time Control

Practical time control and time travel requires significantly large energy levels, from some source, to operate effectively. To achieve time control we can attempt to generate this large energy level or, as an alternative, access and channel the energy already existing and inherent in natural processes and the basic makeup or fabric of spacetime surrounding our planet.

As stated above, it is estimated that a single next-generation time reactor may have the ability to produce more than all of the world's combined power generation capabilities today.
Power Amplification of a Time Reactor
Time-warped field theory demonstrates
a practical way to generate the
necessary concentrated CTCs and
high power levels, without high input
 power, for practical time control
The fabric of spacetime is elastic and very powerful. It takes a tremendous amount of power to create even the slightest twist in spacetime. One can think of the fabric of spacetime surrounding a rotating mass, like the Earth, to be a spring or a battery.

The rotating mass creates a twist in the fabric of spacetime who's natural state and desire is to unwind, just like a spring, or to discharge, just like a battery. Time-warped field technology uses relatively low input power to open a discharge path for this spacetime battery. This technology itself does not create the energy levels required for time control and time travel. Instead, it relies on and operates using the energy stored within twisted spacetime around a rotating body that is created by the inertial frame-dragging effect. With only a small amount of system input power, time-warped field theory shows how enormous power levels can be accessed.

The coupling and discharge process, initiated and also defined by time-warped field theory and technology, generates significant levels of spacetime-motive force that can be used to generate very concentrated fields of closed-timelike curves near the Time Reactor's emitter and power collector array. These fields of closed-timelike curves are concentrated and controllable and can permit both forward and backwards time control.

Respuesta  Mensaje 8 de 163 en el tema 
De: BARILOCHENSE6999 Enviado: 31/05/2015 14:50

Time Control Technologies and Methods

An overview by Dr. David Lewis Anderson

The ability to control time in both a forward and backwards direction is possible within the laws of our mathematics and physics. The chart below (click for larger view) compares ten different technologies an methods. Key characteristics are identified for each and described below.

Time Control Technologies and Methods

Under each key characteristic is a column with either a solid or empty circle. A solid circle indicates a key characteristic is supported by the indicated technology or method, an empty circle indicates it is not.

"Time Control" indicates whether travel to future, past, or both are possible. "Matter Transport" is solid if both matter and information can be transported, empty if only information can be transported. "Tech Viability" is solid if the technology or method is viable with present state-of-the-art technology or within two generations. "Possible Without Exotic Materials" is solid if materials required are available today or within two generations. "Relatively Low Input Power" is solid if time control is achievable within power generation capabilities available today or within two generations.

The time control technologies and methods above include the following:

Quantum Tunneling Time Travel   Quantum Tunneling: is an evanescent wave coupling effect that occurs in quantum mechanics. The correct wavelength combined with the proper tunneling barrier makes it possible to pass signals faster than light, backwards in time.
     
Near-Lightspeed Time Travel   Near-Lightspeed Travel: has the ability to significantly dilate time, sending an accelerating traveler rapidly forward in time relative to those left behind before her travel. The closer to the speed of light, the further into the future the travel.
     
Alcubierre Warp Drive Time Travel   Alcubierre Warp Drive: stretches spacetime in a wave causing the fabric of space ahead of a spacecraft to contract and the space behind it to expand. The ship can ride the wave to accelerate to high speeds and time travel.
     
Faster-than-Light Time Travel   Faster-than-Light Travel: is a controversial subject. According to special relativity anything that could travel faster-than-light would move backward in time. As the same time, special relativity states that this would require infinite energy.
     
Time-warped Field Time Travel   Time-warped Fields: use energy within curvatures of spacetime around a rotating mass or energy field to generate containable and controllable fields of closed-timelike curves that can move matter and information forward or backward in time.
     
Gamma-Magnetic Field Time Travel   Circulating Light Beams: can be created using gamma and magnetic fields to warp time. The approach can twist space that causes time to be twisted, meaning you could theoretically walk through time as you walk through space.
     
Wormhole Time Travel   Wormholes: are hypothetical areas of warped spacetime with great energy that can create tunnels through spacetime. if traversable would allow a traveler to quickly move through great distances in space and also travel through time.
     
Cosmic String Time Travel   Cosmic Strings: are a hypothetical 1-dimensional (spatially) topological defect in the fabric of spacetime left over from the formation of the universe. Interaction could create fields of closed timelike curves permitting backwards time travel.
     
Tipler Cylinder Time Travel   Tipler Cylinder: uses a massive and long cylinder spinning around its longitudinal axis. The rotation creates a frame-dragging effect and fields of closed timelike curves traversable in a way to achieve subluminal time travel to the past.
     
Casimer Time Travel   Casimir Effect: a physical force arising from a quantized field, for example between two uncharged plates. This can produce a locally mass-negative region of space-time that could stabilize a wormhole to allow faster than light travel.


Respuesta  Mensaje 9 de 163 en el tema 
De: BARILOCHENSE6999 Enviado: 31/05/2015 15:02
 
 
DAN WINTER
 
DAN ES UNA REFERENCIA A LA TRANSFIGURACION DE CRISTO. ES OBVIA LA RELACION CON EL DESPLAZAMIENTO EN EL TIEMPO.
 

Respuesta  Mensaje 10 de 163 en el tema 
De: BARILOCHENSE6999 Enviado: 31/05/2015 15:09

 


Respuesta  Mensaje 11 de 163 en el tema 
De: BARILOCHENSE6999 Enviado: 31/05/2015 15:11

! -Fractal Phase Conjugate Nature of Self-Organization/ LIFE- in TIME:
Revealed by Dan Winter's new equation for implosive phase conjugation - precise golden ratio exponents- multiples times PLANCK TIME:

Immediately above: the exact frequency signature (frequencies labelled in BLUE)- and wave shape
of the lo frequency- longitudinal wave generating - phase conjugate pump wave
-

+which causes GAIA - the Earth grid (see the Schumann series there) to emerge from chaos and become self organizing

+which sets up the EEG brainwave alpha-beta series to cause PEAK PERCEPTION, BLISS, EUPHORIA- TRANSCENDANCE

+which causes DNA to implosively braid / recursively embed- to set up NEGENTROPY and SELF ORGANIZATION in the blood (ensoulment)

+which predicts the exact 2 frequencies which ONLY motorize PHOTOSYNTHESIS!

+which then predicts the EXACT frequency series used to reduce pain magnetically used by Elizabeth Rauscher (she did not know the equation)

+which then predicts the EXACT frequency series used to heal thousands of cancers by the PRIORE SYSTEM (who also did not know the equation).

 

Generalized Wave Principle for All Biologic Negentropy


Respuesta  Mensaje 12 de 163 en el tema 
De: BARILOCHENSE6999 Enviado: 25/06/2015 03:41

ANTENAS

 

Existen cuatro clases de propagación:

- Directa.

- Por reflexión.

- Por difracción.

- Por refracción.

 

La directa es la que más interesa.  Es la que se representa por el tópico de "hasta donde alcanza la vista".  Sin embargo, también se puede captar la señal de TV, si tiene suficiente intensidad y no la falsean los obstáculos, por la propagación reflejada en un obstáculo (montaña, edificio, etc), por la difractada siguiendo la ladera de las montañas o colinas o siguiendo la línea del horizonte, y finalmente, por la refractada en las capas inferiores de la ionosfera, (refracción debida al estado ionizado de esta zona de la atmósfera).

 

Pueden llegar a la antena dos señales idénticas pero una reflejada y otra directa, y como no coinciden en el tiempo, se crean las imágenes fantasma, que pueden ser molestas.  Se corrige con antenas de gran directividad.  Si la línea de bajada de antena es larga se puede producir reflexión, en especial si las impedancias no se corresponden.

La antena tanto receptora como emisora, cubre un área tanto más amplia cuanto mayor es su altura.

     El principio de reciprocidad en las antenas es que el comportamiento de ambas es idéntico. Por tanto, si una tiene sentido horizontal, la otra también.  Esto se denomina polarización de la señal.

 

La horizontal proporciona menos ruidos y perturbaciones espúreas y mayor alcance en transmisión.  En España se utiliza este sistema.  En algunos países, ambos para evitar la interferencia entre emisoras próximas en el mismo canal.

En las emisiones de TV y radio FM se emplea onda directa, dando mayor estabilidad a la emisión.

La antena de TV merece tanta más atención cuanto mayor sea la frecuencia del canal a sintonizar y además porque este circuito se halla a la intemperie.

La intensidad de la señal transmitida se mide en el lugar donde se coloque la antena y se mide en μV, (tensión de RF y campo eléctrico de RF en μV/ (por metro).

Como mínimo la señal será de 350 a 500 μV, aunque algunos TV sólo usan 50 μV y menos en los canales 2 y 4 y con 100 μV en los canales 5 y 11.

 

FRECUENCIA DE RESONANCIA DE UNA ANTENA

 

     La vibración o frecuencia de resonancia de una antena es comparable a la vibración de una cuerda o varilla en la que se establecen vientres y nodos. (fig. 1).

 


En RF, a cada nodo de intensidad, le corresponde un vientre de tensión, y a cada vientre de intensidad un nodo de tensión. A este sistema de nodos y vientres que se establecen en una antena se denomina distribución de ondas estacionarias.

En las antenas con un polo a tierra (antenas Marconi), se produce un sólo nodo de intensidad (vientre de tensión) en el extremo de antena. Y viceversa en el plano de referencia de la puesta a tierra. (fig. 2).

En antenas verticales u horizontales no unidas a tierra, la oscilación fundamental se establece para  el semiperíodo, por lo que se llaman antenas de media onda. (fig. 3).

Con esto se ve, que una antena sólo puede entrar en resonancia a ciertas frecuencias bien determinadas (a la fundamental o a ciertos armónicos de ésta).

  

 

La longitud exacta de las antenas es un 5 % menor, debido a aislamientos defectuosos.

 

La separación entre las dos varillas será la menor posible y constante en toda la antena, pues se consigue mayor ancho de banda al ser mayor la superficie de radiación. Por otra parte, bajo el punto de vista eléctrico es inútil utilizar elementos macizos con altas frecuencias, puesto que la corriente circula por la superficie (efecto pelicular).

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

ANTENA DIPOLO INPROVISADA CON UN TROZO DE CINTA PLANA BIFILAR DE 300 Ω.-

 

 

 

 


                        λ = en metros

L = en metros.

f = en MHz.

 


DIPOLO DOBLADO, TRANSFORMADOR DE IMPEDANCIAS.-

Si se varía el diámetro de un elemento en relación al otro, así como la distancia o separación entre ellos, se modifica el valor de la impedancia del conjunto. Al ser diferentes los diámetros, la intensidad, no se distribuye por igual en los dos elementos.

Z aumenta cuando se disminuye el diámetro del elementos de alimentación con respecto al otro.

Z disminuye cuando el diámetro del primer elemento aumenta con respecto al otro.

 

PUNTO DE ALIMENTACIÓN DE LAS ANTENAS.-

La alimentación del emisor a la antena y de la antena al receptor, se hace en un vientre de intensidad.

Así, en las antenas Marconi, (fig. 2), el punto de alimentación se hará muy cerca del extremo de tierra.

Por el contrario, en las antenas de media onda, (fig. 4, 5 y 6), se hará en la parte media de la antena.

 

IMPEDANCIA DE UNA ANTENA.-

La antena tiene cierta capacidad y autoinducción que definen su frecuencia de resonancia. Ante la frecuencia de resonancia las reactancias capacitiva e inductiva, tienen el mismo valor pero desfasadas 180º, y por lo tanto se anulan, y la impedancia es 0.

Por tal motivo, a la frecuencia de resonancia, la antena es puramente resistiva.

La impedancia de acoplamiento es la resistencia que hay al acoplamiento energético de RF y la antena. (En emisor se denomina resistencia de radiación).

 

DIRECCIONALIDAD DE LAS ANTENAS.-

En las antenas verticales la radiación o captación de ondas directas y reflejadas, es la misma en todos los sentidos (antenas omnidireccionales).

En las antenas horizontales, la combinación de ondas directas y reflejadas no es la misma Se trata de una antena direccional.

Como en los casos prácticos, la antena deberá estar sintonizada en banda ancha para que pueda captar todos los canales de una banda.

 

ANTENA DIPOLO DOBLADO.-

Podría utilizarse una antena dipolo simple, pero se utiliza la de dipolo doblado por las siguientes ventajas:

- Mayor resistencia mecánica.

- Impedancia más constante a las variaciones de frecuencia.

 

LÍNEAS DE TRANSMISIÓN.-

Las líneas son de dos tipos:

- Líneas aperiódicas o de ondas progresivas.

- Líneas resonantes o sintonizadas, o sea, de ondas estacionarias.

 

En TV se utiliza la primera. Las segundas, deben tener longitudes muy exactas, mientras que las otras pueden ser aproximadas.


Las líneas aperiódicas llevan la energía de RF sólo en una dirección, desde la antena al receptor, las ondas progresan. Si la línea es resonante, se establece un sistema de vibración por ondas estacionarias.

 

 

IMPEDANCIA DE UNA ANTENA.-         

 

 

Z = Ohmios.

L = Henrios.

C = Faradios.

 

 

ATENUACIÓN.-

Se especifica en tanto por ciento '%' o en 'dB'. Se refiere a un trozo de conductor de 100 m de longitud, por lo general. Son las pérdidas que tiene un conductor a causa del valor óhmico, propiedades del dieléctrico, etc.

 

SIMETRÍA - ASIMETRÍA.-

Esta característica es muy importante para efectuar adaptaciones.

-          Una línea de bajada bifilar es simétrica, ya que sus conductores son iguales.

 


  


  

 - Una línea de bajada coaxial es asimétrica, porque en realidad, sólo hay un conductor, ya que el concéntrico (coaxial)  actúa como pantalla.

Las líneas simétricas son adecuadas para impedancias altas 75 a 300 Ω. La impedancia de una línea bifilar es:

 

 

CINTA PLANA BIFILAR.-

Se fabrica para 75, 150, 240 y 300 Ω. Este tipo de cable es el que se utilizaba con los televisores en blanco y negro que tenían una Z de entrada de 300 Ω. Este tipo de cable está en desuso pues el rendimiento en altas frecuencias como UHF es muy bajo y además, al no estar apantallado, recoge todo tipo de interferencias. El cable se deteriora con facilidad.

 

 

LÍNEAS ASIMÉTRICAS CON CABLE COAXIAL.-

Están constituidas por una malla concéntrica y un conductor central, separados ambos por polietileno celular o expanso. La malla está recubierta con polietileno denso.

Son asimétricas porque uno de los conductores actúa también como pantalla y está a potencial respecto al otro, es decir, sus características eléctricas no son simétricas con respecto a tierra.


La ventaja es que no está influida por señales parásitas, interferencias, etc. Aunque su atenuación es algo mayor que la bifilar, aquélla permanece constante a lo largo del tiempo.

Se fabrican para baja impedancia de 50 a 150 Ω. La más utilizada es de 75 Ω.

Al hacer la instalación, tener la precaución de no doblar demasiado el cable para que no se aplaste la espuma de polietileno.

 

 

ANTENAS FM.-

Estas antenas difieren de las de AM por la diferencia de frecuencia con que trabajan. La antena más sencilla es el dipolo simple. Fig 7.

 

La energía recibida es mayor cuando el dipolo está orientado de tal manera que la señal de la emisora incide perpendicularmente en él. El clásico sistema tierra no es más que una derivación del dipolo simple en los que se ha sustituido un brazo por el suelo.

 

Dipolo plegado.- El mástil no es necesario que esté aislado eléctricamente con el dipolo. (Fig.8). La Z es de 300  Ω y la ganancia es la misma que la anterior. La sensibilidad es mayor cuando está orientada perpendicular-mente a la dirección de emisión.

 

Dipolo plegado circular.- Tiene las mismas características que el anterior, con la ventaja de que al ser omnidireccional, la ganancia es igual en todas direcciones. (Fig. 9).

 

 

 

 

 

Antenas con elementos parásitos.- A los 2 últimos dipolos se les puede añadir conductores rectos, situados a uno y otro lado del plano del dipolo. Se llaman parásitos y aumentan la ganancia. Tienen un elemento director y otro reflector, al igual que las de TV. Las consideraciones que se tienen para TV, valen para FM.

 

Acoplamiento entre antena y receptor.- La máxima transferencia de energía se consigue cuando las impedancias de salida de la antena y de entrada del receptor son iguales.

 

Líneas de transmisión.- Se utilizan líneas como las de TV, con los mismos tipos de cables, coaxial y plano, 75 Ω y 300 Ω, respectivamente.

 


Antenas interiores.- Cuando la señal recibida es fuerte, se puede colocar una antena interior que son derivadas del dipolo simple y plegado.

Una de las más utilizadas es la de cuernos, que no es más que un dipolo simple con los brazos inclinados. Los tubos son extensibles a voluntad y se pueden girar mediante una rótula situada en la base. Esta se puede orientar.

De todos modos, este tipo de antena nunca tiene la efectividad de una buena antena exterior.

 

 

ANTENAS DE TV, 'ANTENAS YAGI'.-

Son antenas directivas de elementos múltiple y alta ganancia. Al añadir al dipolo, por ser bidireccional, más elementos para hacerlo direccional, llamados parásitos, porque en sí mismo no son captadores, llamamos al conjunto antenas 'Yagi'.

Los elementos directores colocados delante, refuerzan la señal en dirección del emisor. Pueden ser varios. Son siempre más cortos que el dipolo, de longitud decreciente conforme se aleja de él.

El elemento reflector colocado detrás, bloquea la captación de señales en la dirección opuesta al emisor. El reflector hace unidireccional el dipolo. El reflector es algo más largo que el dipolo.

Las antenas Yagi tienen más ganancia porque cada elemento adicional hace ganar algo en la captación de la señal.

El dipolo parásito (es igual que un dipolo aunque no está dividido por el centro), recibe cierta energía y la vuelve a radiar en mayor o menor parte, y la recibe el dipolo. Para que las dos radiaciones, la del elemento parásito y la de la emisora, estén en fase, el parásito y el dipolo receptor deben estar a una distancia de 1/4 long. de onda.[1]

 

Antenas directivas en UHF.- La característica de estas ondas, ondas decimétricas, es parecida a un rayo luminoso o a la luz. Si se coloca un obstáculo, éste dificulta la propagación del rayo luminoso. Por eso, las antenas han de colocarse lo más altas posibles, para 'ver' la antena emisora. Como la onda es pequeña, así debe ser el dipolo, que entonces tiene poca superficie de captación de energía y obliga a aumentar el número de elementos directores para aumentar la ganancia. El cable deberá tener pocas pérdidas y lo más corto posible.

 

VHF ----------------- de 3 A 6 elementos.

UHF ----------------- de 6 a 20 elementos, incluso 27.

 

Para mejorar las antenas Yagi de UHF, en vez de un dipolo reflector, están dotadas de un plano eléctrico reflector.

 

ANTENAS MULTIBANDA.-


Hoy en día, existen muchos tipos de antenas, que mejoran los diseños anteriores. Así tenemos la antena multibanda, que como su propio nombre indica capta más de una banda de frecuencia. Con este tipo de antenas, somos capaces de obtener señal tanto de la banda III como de la IV o, de la V. (Fig. 10).

 

MEDIDOR DE CAMPO.-

A continuación se presenta el esquema correspondiente a un sencillo  medidor de campo, cuya utilidad es la de indicarnos el nivel de señal de RF recibida en el lugar que nos encontremos, o también podemos acoplarla a nuestra antena receptora. (Fig. 11).

 

INSTALACIONES CON ANTENA ALEJADA Y RETRANSMISIONES.-

Cuando las condiciones para una recepción perfecta son desfavorables, se recurre a otros métodos de recepción.

Con antena alejada: Es simplemente colocar la antena en lo alto del obstáculo y llevar señal por una línea, y si es necesario, utilizar amplificadores. Cuando la distancia entre el obstáculo y el receptor sea muy grande, ya por motivos económicos o de otra índole, se procederá a la retransmisión.

Retransmisión: Consiste en la conexión de dos antenas, conectadas entre sí, de forma que una se oriente a la emisora y la otra hacia la antena. A esto se le llama relé pasivo.

Si entre las dos emisoras se coloca un pequeño emisor de baja potencia, se le llama relé activo.

El sistema de relé pasivo es interesante cuando la distancia entre el obstáculo y el receptor no exceda de 100 ó 200 m. El activo cubre grandes distancias.

 

CONJUNTOS VHF-UHF Y RADIO-TV.-

 

Cuando hay suficiente nivel de señal, se puede bajar todas las señales por una línea única. Si la señal no es fuerte, se deben emplear amplificadores. Para bajar varias señales de distinta frecuencia por una misma línea, se utilizan los filtros que son mezcladores y separadores. (Fig. 12).

 

 

 


 

 

 

 

ATENUADORES.-

Se utilizan cuando el nivel de la señal es demasiado elevado y existe peligro de bloqueo o saturación de la imagen. Los atenuadores, como su nombre indica, tratan de reducir la señal. Usualmente utilizan filtros en π, y deben tener la impedancia de entrada y salida de acuerdo con la línea. (Fig. 13).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INTERFERENCIAS.-

Las interferencias perjudican notablemente la imagen de un TV. Es necesario estudiar la fuente que produce la interferencia como pueden ser motores eléctricos, motores de explosión, radioaficionados, etc. Una vez detectada la fuente de interferencias, se estudiará si es un defecto de ese equipo o de su instalación , y en caso contrario intentar proteger nuestra instalación con filtros eliminadores de esa frecuencia perturbadora.

 


Se puede colocar un circuito oscilante a la entrada del televisor, que es un cable bifilar o coaxial de longitud/4 de la señal que interfiere.  

 

 


          COAXIAL BIFILAR 

Este cable va en paralelo con la bajada de antena. Como la frecuencia no la conocemos de cierto, tantearemos en la longitud del cable.

Las antenas en el tejado, se influyen mutuamente si están a una distancia de 7 a 15 m. en VHF. En UHF, la influencia es escasa. No se debe colocar una antena en la zona de sombra, por ejemplo, una detrás de otra, a menos que la posterior esté a mayor altura. (Fig. 14).

Se debe inclinar un poco la antena, unos 20º en dirección al emisor.

 

 


ANTENAS COLECTIVAS.-

 

En una instalación de antena colectiva de televisión típica, cuyo esquema genérico se

muestra en la fig. 15, se pueden distinguir tres partes claramente diferenciadas:

  -  Antenas o elementos captadores de señal, cuyo número será variable de pendiendo de la cuantía y tipo de señales a recibir.

  -  Amplificadores, mezcladores y distribuidores que, colocados dentro de un cofre o caja en lugar próximo a las antenas, combinan o mezclan las señales suministradas por las antenas y las amplifican para poder ser distribuidas a todos y cada uno de los abonados, a través de un cable coaxial único.

  -  Red de distribución, o cableado a través de toda la finca con el fin de poner a disposición en las correspondientes tomas de todos los abonados la totalidad de las señales recibidas en las antenas, y en condiciones de ser correctamente visualizadas en los correspondientes receptores.

La inclusión de señales adicionales de televisión comportará, dependiendo de los casos y situaciones, una posible modificación  en el número de antenas o elementos captadores de señal y, en todo caso, una ampliación del equipamiento de amplificadores, mezcladores y distribuidores situado en el cofre.  

 

 

 

 

SISTEMA DE MONTAJE TIPO 'Z'.-

 

Este sistema de montaje, es uno de los más modernos, y se basa en el empleo de amplificadores de ganancia variable por cada canal de TV a recibir.

Las señales procedentes de las antenas que corresponden a cada  banda, es introducida en su amplificador respectivo. Posteriormente, y con ayuda de unos puentes, la señal va pasando por los distintos circuitos y siendo amplificada, obteniendo a la salida del conjunto la señal mezcla amplificada. En los terminales que no haya conexión, se deberán colocar los tapones terminales de 75 ohmios.

El conjunto se alimenta con una F.A. única y que deberá soportar la suma de las corrientes de consumo de cada amplificador.

 

 

VOLVER

 



[1]Al colocar elementos parásitos, si se mantiene la distancia correcta, la Z disminuye un 10 %, que es un valor pequeño. Si la distancia se reduce, la Z disminuirá notablemente y por tanto la ganancia será escasa.

 
http://platea.pntic.mec.es/~lmarti2/ant.htm

Respuesta  Mensaje 13 de 163 en el tema 
De: BARILOCHENSE6999 Enviado: 26/06/2015 01:56

La dualidad onda-partícula:

A partir de las investigaciones de Einstein y de Max Planck, se destruye la opsición tradicional entre materia y energía, puesto que ambas pueden ser interpretadas y estudiadas atrubuyendoles naturaleza corpuscular y ondulatoria.

Tradicionalmente se considera que la materia era discontinua y de naturaleza corpuscular (formada por partículas indivisibles o átomos); la energía, en cambio, se consideraba continua y de naturaleza ondulatoria. Contrariamente, según la física cuántica, tanto la materia como la energía se comportan como partículas y como ondas, hecho profundamente paradojal, ya que las propiedades corpusculares y ondulatorias son incompatibles.

En 1900, Max Planck descubrió  que la energía no se emite de manera continua, si no en “paquetes” o cuantos, de naturaleza discontinua. Poco después, Einstein identificaba los cuantos de la luz , a los que denominó fotones. Por otro lado, Louis de Broglie propuso que no solo los fotones, sino también los electrones se comportan como partículas y como ondas. Experimentos posteriores demostraron que, de hecho, todas las partículas materiales presentan un comportamiento ondulatorio.

En este punto, la ciencia abría un inesperado problema filosófico que solamente se acrecentó aún más: entonces, ¿Cómo es la realidad? Max Born respondía así: “La descrición corpuscular y la ondulatoria deben considerarse solamente como modos complementarios de imaginar un único proceso objectivo, pues está más allá de nuestro poder probar que sean realmente corpusculos o ondas”. De este modo, se cuestionaba, nuestra capacidad para acceder a la auténtica realidad. De hecho, tiempo después se custionaría incluso su existencia:

En consonancia con esta dualidad de la realidad, en el seno de la física cuántica se elaboraron dos teorías alternativas, pero equivalentes:

Mecánica matricial de Werner Heisenberg: Esta formulación prefiere la interpretación de los procesos físicos, como procesos continuos de naturaleza corpuscular, ya que así son nuestras observaciones y el conocimiento que podemos tener de ellas.

Mecánica ondulatoria de Schrödinger: Esta formulación prefiera la interpretación de los procesos físicos continuos y, por eso, destaca el comportamiento ondulatorio de la materia.

Estas teorías estaban basadas en el principio de incertidumbre, e de ellas se desprendían algunas consecuencias que resultaron desalentadoras, no sólo desde la perspecitva de la física clásica, sino mismo para científicos como Einstein que se resistían a aceptar implicaciones filosóficas sobre la realidad que generaba la nueva física.

Principio de incertidumbre:

La mecánica cuántica no puede establecer, simultaneamente y con precisión, la posición y la velocidad de una particula como el electrón. Una de las causas de esta imposibilidad es la inevitable interrelación entre el observador y el objeto observado, ya que no puede haber observación sin intervención del observador. Dicho de otro modo, toda medición implica una interacción entre el observador y el objeto observado, que altera las condiciones de este último. Esto ocurre en todos los casos: por ejemplo, al medir la temperatura del agua de una bañera, introducimos un termómetro que altera precisamente la temperatura que tratamos de medir. Este hecho, que en procesos cotidianos es imperceptible e irrelevante, se convierte en problemático cuando hablamos de fenómenos subatómicos, puesto que cualquier alteración, por mínima que sea, resulta significativa y determinante. Así, por ejemplo, para conocer exactamente la posición de un electrón, debemos iluminarlo con un fotón de luz, que al chocar con el modificará de manera imprevisible su velocidad.

La superposición cuántica:

Una de las consecuencias más sorprendentes de la mecánica cuántica se derivan de las ecuaciones de Schrödinger, que llegan a predecir que dos realidades diferentes y opuestas pueden llegar a superponerse simultaneamente. La teoría predice que, por ejemplo, si tomamos un naipe y lo colocamos sobre una mesa verticalmente y en equilibrio, la carta caerá simultaneamente de los dos lados. ¿Por qué razón en la vida cotidiana nunca observamos esta clase de superposiciones? La mayoría de los físicos considera que es el propio observador quién decide la observacioón en un sentido o en otro. Por lo tanto, en la realidad se dan los dos estados superpuestos, es decir, la realidad se encuentra indeterminada, pues se encuentra en todos los estados posibles al mismo tiempo, hasta que nuestra observación la obloga a determinarse y adoptar un estado o otro. El propio  Schrödinger fue uno de los primeros en darse cuenta de las sorprendentes consecuencias de su teoría, tal y como se pone de manifiesto en la paradoja conocida como El gato de Schrödinger.

-Implicaciones filosóficas:

Algunas implicaciones del modelo actual son las siguientes:

  • Imposibilidad de separación sujeto-objeto: Según el principio de incertidumbre, para observar algo, hay que interaccionar con eso. Cuando el observado es de un tamaño suficientemente pequeño, esa interacción condiciona el resultado del experimento. Por lo tanto, la física cuántica llega a hablar de la creencia (procedente de la herencia griega) de que el mundo es una realidad objetiva que el ser humano puede llegar a conocer.
  • Indeterminismo y ruptura de la casualidad: Desde la mecánica cuántica solamente se pueden  establecer leyes estatísticas que no predicen con exactitud el resultado de una observación, sino que tan solo calculan sus probabilidades. Un ejemplo de este indetreminismo es la la radiación  o la desintegración atómica que se produce espontáneamente y sin que haya una causa que la determine. Este hecho  viola el principio de casualidad, según  el cual todo fenómeno natural debe tener una causa exterior que lo produzca. Para algunos científicos, esta indeterminación  o sería un rasgo de nuestras leyes para describir la realidad, sino  una característica inherente a la realidad misma, que permanece indeterminada mientras no haya una observación que la obligue a decidir en un sentido o en otro.
  • Alejamiento respecto al sentido común: La teoría de la relatividad y la física cuántica se distancian de nuestras intuiciones y percepciones habituales, por lo que resultan poco comprensibles para los que no son expertos. Contribuye a eso el hecho de que las nuevas teorías se apliquen, básicamente, en ámbitos cotidianos: en el macrocósmico y en los subatómico. Y es que, en el ámbito de la escala humana en el que nos movemos, siguen siendo válidas las leyes de la física clásica.
 


Primer  Anterior  2 a 13 de 163  Siguiente   Último 
Tema anterior  Tema siguiente
 
©2024 - Gabitos - Todos los derechos reservados