Página principal  |  Contacto  

Correo electrónico:

Contraseña:

Registrarse ahora!

¿Has olvidado tu contraseña?

Secreto Masonico
 
Novedades
  Únete ahora
  Panel de mensajes 
  Galería de imágenes 
 Archivos y documentos 
 Encuestas y Test 
  Lista de Participantes
 EL SECRETO DE LA INICIACIÓN 
 Procesos Secretos del Alma 
 Estructura Secreta del Ritual Masónico 
 Los extraños Ritos de Sangre 
 Cámara de Reflexiones 
 
 
  Herramientas
 
General: DIA DE MARIA MAGDALENA Y SU RELACION CON MARTE Y EL METRO
Elegir otro panel de mensajes
Tema anterior  Tema siguiente
Respuesta  Mensaje 1 de 73 en el tema 
De: BARILOCHENSE6999  (Mensaje original) Enviado: 06/06/2018 00:42
Resultado de imagen para MARS 227000000
 
 
 
22/7=3.14
 
 
¿USTED ES UN NARCISISTA QUE NO CREE EN LA CIENCIA?


Primer  Anterior  59 a 73 de 73  Siguiente   Último  
Respuesta  Mensaje 59 de 73 en el tema 
De: BARILOCHENSE6999 Enviado: 18/09/2022 04:20
TAKE A WALK ON MARS - Ypsilanti District Library

Respuesta  Mensaje 60 de 73 en el tema 
De: BARILOCHENSE6999 Enviado: 18/09/2022 04:20
TAKE A WALK ON MARS - Ypsilanti District Library

Respuesta  Mensaje 61 de 73 en el tema 
De: BARILOCHENSE6999 Enviado: 30/09/2022 02:08
SOLVED: 'Learning Task 1: Complete the table by converting the measured  distance of planets into centimeters (cm) using the scale 1 cm =10 million  km. Write your answer on your answer sheets.

Respuesta  Mensaje 62 de 73 en el tema 
De: BARILOCHENSE6999 Enviado: 27/05/2023 10:01


Respuesta  Mensaje 63 de 73 en el tema 
De: BARILOCHENSE6999 Enviado: 04/07/2023 17:10


Respuesta  Mensaje 64 de 73 en el tema 
De: BARILOCHENSE6999 Enviado: 03/04/2024 13:43

Respuesta  Mensaje 65 de 73 en el tema 
De: BARILOCHENSE6999 Enviado: 21/04/2024 14:01
Resultado de imagen para interes milei javier
Utah Elevated: Cathedral of the Madeleine in SLC - YouTube

salt lake city=alchemy (salt)=dollar=$= LOT S WIFE (SODOMA AND GOMORRA)

What does it mean to “remember Lot's wife” in Luke 17:32? | GotQuestions.org
Luke 17:32 KJV - Remember Lot's
REMEMBER LOT'S WIFE - LUKE 17:32-33 - END TIMES EVENTS - SO4J
Quant Rubs Salt into the Li-on Battery Competitors Never Think You R Home &  Dry
Na-ion Battery (Salt Battery) Futuristic Tech for 2024! Elon Musk's LTP  4680 is Danger?
Molten Salt Batteries Market Size & Growth Report, 2024-2030
BYD launching First 9000$ Sodium Ion Battery EV Changes Everything!
Salt Power: How BYD’s New EV Revolutionizes the Industry with a 9000$ Price  Tag!
Cathedral of the Madeleine, Salt Lake City, UT
The Mystery of Salt Lake City's Missing Church Stained Glass Windows | Salt  Lake City Stained Glass
Cathedral of the Madeleine, Salt Lake City, Utah
Hill Valley, el pueblo de 'Regreso al futuro', será recreado en Londres
Welcome To Hill Valley Sign 9"x12" Back to The Future Reproduction | eBay
Fillmore, California becomes Hill Valley of "Back to the Future" - Park  Journey
I find the HV map in bttf.com - GTA: Hill Valley - Back To The Future: Hill  Valley
Salt Lake Valley Trails - Utah Hiking Beauty
 
 
Salt Lake Valley map - Ontheworldmap.com
Salt Lake Valley | List | AllTrails
Remember Lot's Wife - Luke 17:32 | PPT
BYD launching First 9000$ Sodium Ion Battery EV Changes Everything!

Respuesta  Mensaje 66 de 73 en el tema 
De: BARILOCHENSE6999 Enviado: 04/06/2024 13:37
15 ago 2013 — What is the angular diameter of the sun as viewed from Mars? Answer: 57.3 x (1400000/227,000,000) = 57.3 x (1.4/227) = 0.35 degrees. Problem ...
2 páginas

Respuesta  Mensaje 67 de 73 en el tema 
De: BARILOCHENSE6999 Enviado: 04/06/2024 13:41
SOLVED: Learning Task 1: Complete the table by converting the measured  distance of planets into the scale cm [0 million km]. Write your answer on  your answer sheet. Use the following formula

Respuesta  Mensaje 68 de 73 en el tema 
De: BARILOCHENSE6999 Enviado: 04/06/2024 13:58
Solved: Learning Task 1: Complete the table by converting the measured  distance of planets into ce [Math]

Respuesta  Mensaje 69 de 73 en el tema 
De: BARILOCHENSE6999 Enviado: 07/06/2024 04:34
Resultado de imagen para cydonia mars number 33

Respuesta  Mensaje 70 de 73 en el tema 
De: BARILOCHENSE6999 Enviado: 30/10/2024 04:12

Efemérides: Pierre-Simon Laplace


shadow 

Efemérides: Pierre-Simon Laplace

Beaumont-en-Auge, Normandía, 23 de marzo de 1749 -París, 5 de marzo de 1827

Astrónomo, físico y matemático. Desarrolló la transformada de Laplace y la teoría nebular, ecuación de Laplace. Compartió la doctrina filosófica del determinismo científico.

Su obra más importante, “Traité de mécanique céleste”, es un compendio de toda la astronomía de su época, enfocada de modo totalmente analítico, y donde perfeccionaba el modelo de Newton, que tenía algunos fenómenos pendientes de explicar, como la aceleración de Saturno y la Luna, o el frenado de Saturno, que inducían a pensar que Saturno sería captado por el Sol, y Júpiter saldría del sistema solar y la Luna caería sobre la Tierra.

Laplace demostró que la aceleración de Júpiter y la Luna y el frenado de Saturno no eran contínuos, sino que eran movimientos oscilatorios de períodos milenarios, explicando de esta manera y con muy complejos cálculos, estos fenómenos que constituían anomalías en el modelo newtoniano de Universo.

Durante la Revolución Francesa, ayudó a establecer el Sistema Métrico.

Enseñó Cálculo en la Escuela Normal y llegó a ser miembro del Instituto Francés en 1795. Bajo el mandato de Napoleón fué miembro del Senado, y después Canciller y recibió la Legión de Honor en 1805.

https://www.diariomasonico.com/efemerides/pierre-simon-laplace/

Respuesta  Mensaje 71 de 73 en el tema 
De: BARILOCHENSE6999 Enviado: 30/10/2024 05:12

Was the metre invented by the Ancient Egyptians 4500 years ago?

One of our readers, John Frewen-Lord, speculates that the metre may be the modern version of a measure that was familiar to the Pharaohs.

While we think of today’s metric system (SI) as mostly a modern invention (1960), we have been led to believe for many years now that its most fundamental base unit, the metre, originated in France in 1793, and represented one ten-millionth of the earth’s quadrant (the distance from the earth’s equator to the North Pole, as measured at sea level) . Yet just a few years ago, the late Pat Naughtin discovered that the proposal for a universal standard of length very close to the metre may in fact have originated much earlier, via Bishop John Wilkins, an English cleric and philosopher, and a member of the Royal Society, in the mid-1600s. Recent comments on Metric Views now bring even that assertion into doubt, with the discovery of a measuring device called the wand having been around much longer still.

It is known that the wand, divided into ten segments, was almost exactly, to within a few millimetres, the same length as today’s metre, and that it was used as long as 1000 years ago. But what if all these versions of the metre were simply the rediscovery (or the handing down over time) of a standard measure, equating to the metre, that was invented in Egypt over 4500 years ago?

When we think of units of measure used in Biblical times, the cubit usually springs to mind. In fact, opponents of metric conversion have often referred to the cubit, in jest at least, as having as much validity as the metre. Such people should be careful for what they wish for, for, as we shall see, the cubit and the metre may in fact be directly related – and remarkably both are directly traceable to the Great Pyramid at Giza.

At first sight, such direct relationship may not be immediately apparent. There are a number of variations of the cubit, each different in length, but it is accepted that the Egyptian royal cubit is the definitive cubit, of which a physical example is on display in the Liverpool museum. Used to set out the Great Pyramid, its length measures 524 mm, or 0.524 m. For anyone hoping to see a nice round relationship between the cubit and the metre, I’m afraid the story is much more complicated than that! But keep in mind that number of 0.524 – for it will crop up again.

Let us look briefly at some of the mathematical properties of the Great Pyramid. Apart from the fact that it is just 3/60ths of a degree off an orientation of true north (the Prime Meridian through Greenwich is 9/60ths of a degree out of such an alignment), the Great Pyramid contains some quite stunning dimensional relationships between the numerical constants of pi (?), phi (?) and Phi (?) – and those relationships involve a dimension that is exactly equal to today’s metre. Let us explore this a bit further.

We all know what pi is. It is the ratio of a circle’s circumference to its diameter, and is approximately equal to 3.1416 (another number to keep in mind). We are probably less familiar with Phi and phi. One is the reciprocal of the other, with values of 1.618 and 0.618 respectively. The value of 1.618 is known as Phi with a capital P (?), while the reciprocal 0.618 value is represented by the lower case phi (?), and the two collectively are known by many names, such as the Golden Ratio, the Golden Mean, the Golden Number, and others, but they are values that exist throughout nature. Their discovery is attributed to mathematician Fibonacci in the 13th century.

Fibonacci noted that much of nature – and indeed much of Roman architecture – encompassed relationships of 1.618 and 0.618 for various aspects of design, and that these relationships relate to what is known as the Fibonacci sequence, consisting of 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, and so on, where each number is the sum of the previous two numbers. What is not always realised is that if you take any two adjacent numbers, say 55 and 89, you can obtain two ratios – 1.618 if you divide the second by the first, and 0.618 if you divide the first by the second (the minor variations in the decimal places get smaller as the numbers get bigger, coinciding at infinity). The Golden Ratio has a few unique properties – in fact these equations work only with the Golden Ratio and nothing else:

? = 1 + ? (i.e. 1.618 = 1 + 0.618);

? = 1/? (i.e. 1.618 = 1 ÷ 0.618);

? + 1 = ?² (i.e. 1.618 + 1 = 1.618² = 2.618);

? – 1 = 1/? (i.e. 1.618 – 1 = 1 ÷ 1.618 =0.618).

If we skip alternate numbers in the Fibonacci sequence, we end up with the same result as either ?² or adding 1 to ? – e.g. 144 ÷ 55 = 2.618 = 1.618 + 1 = 1.618² (keep in mind also the number of 2.618). Now you may be saying that this is all very interesting, but what has it got to do with the Great Pyramid at Giza, let alone the origins of the metre? All will become clear!

It is well known and accepted that the Great Pyramid incorporates the value of ? in its geometry – this was discovered by Englishman John Taylor in 1859, when he found that if you divide half the length of the Pyramid’s base perimeter by its height, you end up with ?. The base length of one side is 230.3 m, while its original height is 146.6 m. Therefore (230.3 x 2) ÷ 146.6 = 3.1418 – not precisely ?, but then the height of 146.6 m is at best an estimate of just how high the Pyramid was 4500 years ago (the very top is now missing, as is part of its external cladding, and ground level has likely changed). Likewise, take a circle with the same circumference as the perimeter of the base of the Great Pyramid. Calculate the radius of this circle. It will be found to be exactly equal to the Great Pyramid’s height (230.3 x 4 = 921.2. 921.2 ÷ (2 x 3.1416) = 146.6).

We must note that these relationships, along with many other relationships embodied in the Great Pyramid, can be made using any measurement units – they are not exclusive to the metre.

The Golden Ratio ? is there as well. If we take the surface area of the four sides, and divide that by the area of the base, we come to the value of ? (4 x 0.5 x 230.3 x 186.4 ÷ 230.3² = 1.618). Again, that is purely a ratio, and is not dependent upon any particular unit of measure. But now let us do some more calculations involving the Great Pyramid’s geometry that are dependent upon the metre – and only the metre.

  • If we add two of the sides of the Pyramid’s base together, then subtract the height, we end up with a rounded value of 100 x ? (230.3 x 2 – 146.6 = 314.0).
  • The King’s Chamber measures 5.24 m x 10.47 m. The Chamber’s perimeter = 10 x ? (31.42 m). There are also many measurements in the King’s Chamber that relate to even multiples of ?, but only using metres.
  • If we draw two circles, one circumscribing the Pyramid’s base (i.e. intersecting the four corners) and one inside (i.e. touching the mid-point of each side), then subtract, in metres, the circumference of the inner circle from that of the outer circle, you end up with a figure of 299.71. This is almost exactly one millionth of the speed of light in metres per second (299 792 458 m/s – the slight discrepancy is due to rounding at various points along the way).

Hold on – the ancient Egyptians may have known about the metre, but surely they didn’t know about the second? Perhaps they did. The length of two sides of the base of the Great Pyramid is the distance a point on the equator moves through space in exactly one second.

I’m sure if you tried hard enough, the Great Pyramid may be found to contain some mathematics that support imperial measures, even though things like the foot and inch were not anywhere near close to existence 4500 years ago, and anyway are promoted as being based on human properties, not mathematical ones. But there is one thing that really does indicate that the ancient Egyptians were very familiar with the metre. I mentioned early on in this article that the cubit, which was used to build the Great Pyramid (each side has a length of 440 cubits), was 0.524 m long, an apparently odd relationship to the metre. Let us however look at three equations:

  • One sixth of ? is 0.5236 – to all intents and purposes exactly the length of the cubit in metres (to within 0.4 mm of the known physical example, and even that assumes that this example’s stated length has not been rounded to three decimal places); quite why one sixth is not clear, but the Great Pyramid is located exactly 30° above the equator – i.e. one sixth of the distance between the two poles.
  • One fifth of ?² (2.618) = 0.5236 – again, exactly the length of the cubit in metres. There are five increments of 72° in a circle of 360°. It is known that the earth wobbles slightly on its axis, at the rate of 1° every 72 years.
  • ? – ?² (3.1416 – 2.618) = 0.5236 – another relationship that yields the length of the cubit in metres, and ties together, by means of the cubit (and hence the metre), the two constants that are embedded in the Great Pyramid’s mathematical properties.

These equations cannot be pure chance or coincidence, but must have been created by a society that knew all about the metre 4500 years ago, and from which they derived the cubit. One thing is certain – no measurement unit can be more natural than the metre, based as it is on nature’s constants of ? and ? (not to mention the circumference of the earth). Clever people, those ancient Egyptians.

[Note: I claim little original material in this article, but have made extensive use of sources from Wikipedia, YouTube and others, all of which must be treated with the usual caution as to their absolute accuracy. J F-L]

https://metricviews.uk/2013/06/07/was-the-metre-invented-by-the-ancient-egyptians-4500-years-ago/

Respuesta  Mensaje 72 de 73 en el tema 
De: BARILOCHENSE6999 Enviado: 31/10/2024 01:51
Tarjeta de identificación de Marty McFly Regreso al futuro | Etsy
Neil deGrasse Tyson Explains How Time Is Different on Mars - YouTube
Tarjeta de identificación de Marty McFly Regreso al futuro | Etsy
Pin de Jesse Barnhill en Art to sample en 2021 | Regreso al futuro, Volver  al futuro 2, Futuro
Resultado de imagen para MARS 227000000
 
 
 
22/7=3.14
Mars! By:Tahani and Fatima. Mars' orbit length Mars' orbit length is  227,940,000 kilometers.Most of our planets length are even longer than this  planet. - ppt download
Solved: Learning Task 1: Complete the table by converting the measured  distance of planets into ce [Math]
Resultado de imagen para cydonia mars number 33

Respuesta  Mensaje 73 de 73 en el tema 
De: BARILOCHENSE6999 Enviado: 07/01/2025 14:27

Estación de Madeleine

 
 
Madeleine

La estación de la línea 12
Estación de Madeleine ubicada en París
Estación de Madeleine
Estación de Madeleine
Estación de Madeleine (París)
Ubicación
Coordenadas 48°52′11″N 2°19′28″E
Comuna VIII Distrito
Localidad París
Datos de la estación
Código 10-03 o MAD
Inauguración 5 de noviembre de 1910
Pasajeros Sin datos disponibles
N.º de vías 6
Propietario RATP
Operador RATP
Líneas
  Estación de Concorde   Estación de Opéra  
  Estación de Paris Saint-Lazare   Estación de Concorde  
  Estación de Paris Saint-Lazare   Estación de Pyramides  

Madeleine es una estación de las líneas 812 y 14 del metro de París situada en el 8.º distrito, cerca de la Iglesia de la Madeleine.

Historia

[editar]

El nombre de la estación proviene de un pueblo que se estableció en el siglo vi al oeste de la capital en torno a una capilla de la diócesis de París que fue dedicada en el siglo xiii a Santa María Magdalena. Siglos después se incorporó a París al crecer la ciudad y se edificó el actual templo de estilo neoclásico.

Fue inaugurada el 5 de noviembre de 1910 con la apertura de la línea A, hoy línea 12, de la Compañía Nord-Sud. El 13 de julio de 1913, llegaría la línea 8, con la puesta en marcha de su tramo inicial entre en Beaugrenelle y Opéra. Mucho más recientemente, el 15 de octubre de 1998, se abrió la estación de la línea 14, una estación que marcó el final de línea hasta el año 2003, siendo posteriormente prolongada hasta Saint-Lazare.

Descripción

[editar]

Estación de la línea 8

[editar]

Se compone de dos andenes laterales 75 metros de longitud y de dos vías.

Está diseñada en bóveda elíptica revestida completamente de los clásicos azulejos blancos biselados del metro parisino.

La iluminación es de estilo Motte y se realiza con lámparas resguardadas en estructuras rectangulares de color naranja que sobrevuelan la totalidad de los andenes no muy lejos de las vías.

La señalización por su parte usa la moderna tipografía Parisine donde el nombre de la estación aparece en letras blancas sobre un panel metálico de color azul. Por último los asientos, que también son de estilo Motte, combinan una larga y estrecha hilera de cemento revestida de azulejos naranja que sirve de banco improvisado con algunos asientos individualizados de color amarillo que se sitúan sobre dicha estructura.

Estación de la línea 12

[editar]

Se compone de dos andenes laterales curvados de 75 metros de longitud y de dos vías.

En su diseño es idéntica a la estación de la línea 8 variando el color, ya que en este caso se ha optado por el rojo.

Estación de la línea 14

[editar]

A diferencias de las anteriores, la estación de la línea 14 si ofrece mayores elementos decorativos.

En sus accesos, dentro de una urna de cristal, se conserva una réplica de una obra del escultor rumano Constantin Brancusi llamada La prière (el rezo), que muestra a una figura humana desnuda rezando de rodillas. La obra fue donada a la RATP por la fundación franco-rumana para celebrar el 125 aniversario del nacimiento del autor. También en los accesos a la estación se encuentra una vidriera semicircular, a pie de suelo, que representa la gallina Ryaba junto a un texto escrito en ruso que fue donada por el metro de Moscú. Por último, dentro de la estación, en la bóveda de piedra se encuentra una instalación artística, realizada por Jacques Tissinier, titulada Tissignalisation n°14. Consiste en la colocación de mil discos de acero de 16 centímetros de diámetro que simulan hojas de papiro estilizadas coloreadas en blanco, azul, rojo y naranja.

En cuando a la estación en si, se compone de dos andenes laterales de 120 metros y de dos vías, siguiendo con el diseño moderno de todas las estaciones de la línea 14. Sin embargo, eso no ha evitado problemas de mal olor causado por la emanación de ácido sulfhídrico por culpa de una aislamiento defectuoso de las instalaciones.1

Bibliografía

[editar]
  • Pierre Miquel (1993). Petite histoire des stations de métro. éditions Albin Michel. ISBN 2-226-06671-3.


Primer  Anterior  59 a 73 de 73  Siguiente   Último  
Tema anterior  Tema siguiente
 
©2025 - Gabitos - Todos los derechos reservados