Page principale  |  Contacte  

Adresse mail:

Mot de Passe:

Enrégistrer maintenant!

Mot de passe oublié?

Secreto Masonico
 
Nouveautés
  Rejoindre maintenant
  Rubrique de messages 
  Galérie des images 
 Archives et documents 
 Recherches et tests 
  Liste de participants
 EL SECRETO DE LA INICIACIÓN 
 Procesos Secretos del Alma 
 Estructura Secreta del Ritual Masónico 
 Los extraños Ritos de Sangre 
 Cámara de Reflexiones 
 
 
  Outils
 
General: VENECIA="AGUA VIVA"=$=CAPITALISMO=RELATIVIDAD DE EINSTEIN=3.14=22/7
Choisir un autre rubrique de messages
Thème précédent  Thème suivant
Réponse  Message 1 de 172 de ce thème 
De: BARILOCHENSE6999  (message original) Envoyé: 20/11/2019 17:50
Resultado de imagen para MAQUINA DEL TIEMPO DE VENECIA
 
ISLA SAN GIORGIO (VENECIA)=GEORGE LEMAITRE
 
Resultado de imagen para VENICE SNAKE
 
Resultado de imagen para genesis 22:15,18
 
Resultado de imagen para RIO DE AGUA VIVA ENERGIA
Resultado de imagen para EINSTEIN STONE
Resultado de imagen para einstein pi
Resultado de imagen para einstein pi
Resultado de imagen para bukidnon-monastery-of-transfiguration
 
 
 
Resultado de imagen para stephen hawking HORA DE LA MUERTE
 
15 mar. 2017 - Subido por Derivando
Qué relación hay entre Albert Einstein, los ríos y el famoso número Pi? Hoy en Derivando te lo vamos a explicar ...
 
15 mar. 2017 - Subido por Derivando
Qué relación hay entre Albert Einstein, los ríos y el famoso número Pi? Hoy en Derivando te lo vamos a explicar ...
 
7 dic. 2017 - Subido por Jaume Solsona Villaplana
Einstein, los ríos y el número PI. Jaume Solsona Villaplana. Loading... Unsubscribe from Jaume Solsona ...
 
15 mar. 2017 - Subido por Derivando
El bloguero de YouTube Eduardo Sáenz explica uno de los descubrimientos de Albert Einstein en relación a la ...


Premier  Précédent  158 à 172 de 172  Suivant   Dernier  
Réponse  Message 158 de 172 de ce thème 
De: BARILOCHENSE6999 Envoyé: 29/10/2024 05:10
Herbert George Wells (1866-1946) 'The Time Machine' - презентация онлайн

Réponse  Message 159 de 172 de ce thème 
De: BARILOCHENSE6999 Envoyé: 13/11/2024 03:20
Back to the Crypto Future – Premium Crypto Conference Post Regulation:  Another Great Event by FinTech Silicon Valley
Bitcoin back to the future — Steemit
Bitcoin is a Fiasco”: Memes About Cryptocurrency Collapse From The Coin  Shark | The Coin Shark memes en… | Funny memes, Memes hilarious can't stop  laughing, Memes
cryptolul en Twitter: "If you could go back to the 'future' $btc #bitcoin # btc #crypto #cryptocurrency #altcoins #alts #money #rich #finance  https://t.co/pdRtOpRPZI" / Twitter
Abstracting Away The Complexity Of Payments With Blockchain Technology
Bitcoin: The Future of Money?: Amazon.co.uk: Frisby, Dominic:  9781783520770: Books
Adam Ahmed (@trustedprojects) / X
Adam Ahmed (@trustedprojects) / X
Resultado de imagen para JOHN BAPTIST FREEMASONRY
The Great Pyramid and Jesus - Adept Initiates
STUDY 6: The Levites – BIBLE Students DAILY
Tabernacle Schematics 2
Notebook: Introduction To The Tabernacle (3) | Believer's Magazine
The Tribe of Levi
7. The Tabernacle, Priesthood, and Sacrifices (Exodus 20-31, 35-40;  Leviticus 1-17; Numbers 6-10). Moses Bible Study
Pin on RIsas de Instagram
John DeLorean: del éxito del coche de 'Regreso al futuro' al escándalo por  estafa y narcotráfico
How "Back to the Future" Made the DeLorean Car Famous | American Collectors  Insurance
John DeLorean: Un magnate de leyenda (2021) - Filmaffinity
SYD - ???????????????? En el día de “Volver al futuro” recordamos a John DeLorean,  quien llegó a ser el ejecutivo más joven de General Motors y cuya fábrica  DMC sólo lanzó un
AutoxpressMx | John DeLorean fue un ingeniero y ejecutivo de la industria  automotriz que previamente trabajó en General Motors. Creador del famoso...  | Instagram

Réponse  Message 160 de 172 de ce thème 
De: BARILOCHENSE6999 Envoyé: 13/11/2024 03:50
Science in the Bible: The Water Cycle
What is Water Cycle? | Science

Réponse  Message 161 de 172 de ce thème 
De: BARILOCHENSE6999 Envoyé: 25/11/2024 19:33
Cloud Condensation Stock Illustrations – 8,421 Cloud Condensation Stock  Illustrations, Vectors & Clipart - Dreamstime
Daniel 7:13 In my vision in the night I continued to watch, and I saw One  like the Son of Man coming with the clouds of heaven. He approached the  Ancient of
Daniel 7:13 RVA - Miraba yo en la visión de la noche, y he aquí

Réponse  Message 162 de 172 de ce thème 
De: BARILOCHENSE6999 Envoyé: 01/12/2024 16:41
Budismo y física (II) | Centro Budista de Valencia

Réponse  Message 163 de 172 de ce thème 
De: BARILOCHENSE6999 Envoyé: 02/12/2024 13:55
 

The realm of relativistic hydrodynamics

Modeling relativistic fluids and the phenomena associated with them – from supernovae and jets to merging neutron stars

AN ARTICLE BY JOSÉ ANTONIO FONT RODA

Hydrodynamics or fluid dynamics is the study of the behaviour of fluids such as water and air – water flowing down a canal, but also, for instance, air flowing around an airplane fuselage. The term relativistic hydrodynamics (or relativistic fluid dynamics) refers to the study of flows in the arena of special or of general relativity. Special relativity will come into play when the velocities attained by certain portions of the fluid or by the fluid as a whole approach the speed of light. General relativity comes into play when there are sufficiently strong gravitational fields – either because the fluid’s environment features such fields, or because the mass and energy of the fluid are sufficient to generate their own strong gravity.

The flows we are accustomed to in daily life are a far cry from meeting either of the two conditions – even the flows encountered by a supersonic aircraft amount to no more than a fraction of a percent of the speed of light, and within the whole solar system, there are no really strong sources of gravity altogether. However, such extreme conditions, where hydrodynamics becomes relativistic, are routinely encountered by astronomers observing some of the most violent events in the cosmos.

In fact, almost any phenomenon astronomers observe in the context of what is suitably called high-energy astrophysics requires a relativistic description. In order to understand the dynamics and evolution of such phenomena (we’ll get around to some impressive examples, below), astrophysicists usually resort to mathematical models which incorporate relativistic hydrodynamics as a key building block.

The challenge of relativistic hydrodynamics

The equations describing relativistic hydrodynamics are remarkably complex. In addition to Einstein’s description of gravity, space and time – which entails equations that are already quite complex all by themselves – they must also incorporate proper models for the properties and behaviour of matter, for instance how it flows or reacts to external pressure. For very idealised situations it might be possible to do the calculations by hand, writing down explicit formulae describing the dynamics. An example would be the collapse of a shell that is perfectly spherical (and thus perfectly symmetrical) and made of matter which has very simple properties, dust, for instance, which has no internal pressure to resist gravity, and which thus collapses readily to form a black hole. But for more realistic matter models, which are necessarily more complicated and without any assumption of symmetry, the only option left is to perform computer simulations, in other words: to use the techniques of numerical relativity.

Such simulations have become a powerful way to improve our understanding of the dynamics and evolution of the different kinds of relativistic flows encountered in physics. In particular, this is true for astrophysical systems which, given their size and mass, do not lend themselves to laboratory experimentation. Even so, in order to produce realistic simulations, it is necessary to push current computer technology and programming to their very limits. Indeed, progress in the field is closely tied to advances in the capabilites (such as speed and memory) of (super-)computers on the one hand, and to improvements in the design of ever more efficient and accurate simulation algorithms on the other.

Let us now take a quick tour of the astrophysical realm of relativistic hydrodynamics.

Collapse

We start with a paradigmatic example for the necessity of relativistic hydrodynamics: the collapse of the core of a massive star in the course of a supernova explosion, leading to the formation of extremely compact objects – neutron stars or possibly even black holes.

As the core of the star collapses, it reaches enormous densities – at peak values, matter is so compressed that a tablespoon full would have a mass of more than a hundred million tons – and the dynamic evolution is highly interesting, from the core literally bouncing back as the properties of matter change to the formation of travelling disturbances (shocks). During its fall, the matter can reach velocities up to 40 percent of the speed of light. For the collapse itself, Newtonian gravity and Einstein’s general relativity give markedly different predictions – in Einstein’s theory, gravity in the central regions is up to 30 percent stronger. This makes a relativistic description of hydrodynamics and gravity absolutely essential, especially in the case of a rotating inner core, where there is a delicate balance between the centrifugal forces associated with rotation and gravity’s inward pull. The following animation is based on a relativistic simulation of a collapsing stellar core:

star_collapse

[Image: AEI/ZIB/LSU. Animation size 942kB; please allow time for loading.]

Download movie version (mpeg, 19MB) here

The colors encode the different densities; during the animation, you can see the formation of a red-orange region that is the neutron star. The red and green patterns projected onto an imaginary plane beneath the newly formed star towards the end of the animation represent the gravitational waves produced during the collapse.

As a result of the core bouncing back, the outer layers of the star are ejected. This starts off the supernova explosion with its massive increase in brightness that allows astronomers here on earth to observe these phenomena even when they happen in other galaxies! The debris of the explosion makes for beautiful astronomical objects such as the supernova remnant N63a in one of our neighbouring galaxies, the Large Magellanic Cloud:

 

Supernova remnant N63a

[Image: NASA/ESA/HEIC/Hubble Heritage Team (STScI/AURA)]

Core collapse is not the only way to make a supernova. Alternatively, we might be dealing with a White dwarf star – the remnant of a low-mass star like our Sun – capturing matter from an orbiting companion. Once a critical mass is reached, the White Dwarf will disintegrate in a thermonuclear explosion, leading to what astronomers call a supernova of type Ia.

 

Relativistic jets

Another very common phenomenon where relativistic hydrodynamics comes into play is the formation of so-called jets – situations in which matter flows onto a compact body, and some of the matter being flung away in a pair of tightly focussed beams! If this happens around a compact object of a few or a few dozen solar masses, we have what is called a microquasar; if the central object is much more massive, with a couple of millions or even billions of solar masses, we are dealing with an active galactic nucleus. The following image shows an example, the radio galaxy 3C272.1. In the close-up, one can clearly see the two tight beams emitted in opposite directions from the central core:

 

nrao_ngc4374

[Image: NRAO/AUI/NSF]

In fact, in the jets of many extra-galactic radio sources associated with active galactic nuclei, it seems as if matter were propagating faster than the speed of light! While this is just an optical illusion caused by matter moving near the speed of light, and almost directly towards or directly away from the observer, for this optical effect to occur, the jets’ flow velocities must be at least as large as 99% of the speed of light . One example, a blob of plasma (left) moving away from the core of an object called a blazar (an active galactic nucleus whose approaching jet is seen almost exactly head-on), is shown in the sequence below:

 

 

nrao_0827_243

[Image: Piner et al., NRAO/AUI/NSF]

The object is the blazar 0826+243, and the plasma blob appears to move at 25 times the speed of light – while, in reality, it “only” moves at more than 99.9% of lightspeed.

 

Astronomers have made many high-resolution radio observations of jets, revealing a wealth of form and structure. Using the equations of relativistic hydrodynamics, together with the equations governing the dynamics of magnetic fields and the interactions of such fields with matter (“relativistic magneto-hydrodynamics”), it is possible to explain how these structures come about. In recent years, researchers have managed to perform quite detailed simulations of relativistic jets. An example can be seen in the animation below, which shows the evolution of a powerful jet as it propagates through the intergalactic medium:

 

jetsim

[Image: Max Planck Institute for Astrophysics/L. Scheck et al. in Mon. Not. R. Astron. Soc., 331, 615-634, (2002).]

For the main structures observed in the simulations – for instance propagating discontinuities in the beam, and a hot spot at the head of the jet – astronomers can find counterparts as they observe extragalactic radio sources.

 

Gamma ray bursts

A relativistic description of gravity and of the dynamics of matter is also necessary in scenarios involving the gravitational collapse of massive stars (with masses of about 30 solar masses and higher) to form black holes, or during the last phases of the coalescence of two neutron stars which orbit each other. These two explosive events are believed to be the mechanisms responsible for the so-called gamma-ray bursts, the most luminous events in the universe short of the big bang itself. In particular, stellar collapse is considered the mechanism behind what are called “long” gamma-ray bursts, the bursts lasting for about 20 seconds, while neutron star mergers are regarded as responsible for “short” gamma-ray bursts, with a duration of only about 0.2 seconds. The following animation shows on the left a false colour image of the gamma rays received from the different regions of the whole sky, using data collected with NASA’s Compton Gamma Ray Observatory. As you can see, there is a bright flash in the top half which, at one time, is so bright that it dominates the whole of the image. This is one particular gamma ray burst; the curve on the right traces how the burst’s brightness changes over time:

 

grb_animation

[Image: NASA’s “Imagine the Universe!” website]

Since the gamma-ray bursts take place at a distance of billions of light years from Earth, the fact that, even at that distance, they are visible as extremely bright phenomena implies that huge amounts of energy must be released – comparable to converting the mass of our sun completely into gamma-rays over the course of a few seconds within a region of space no more than a couple of thousand kilometres across. There is general agreement, supported by observational evidence, that the gamma rays are not emitted in all directions (such as the emissions of a light bulb), but that they are focussed (such as the light from the beam of a lighthouse, which you only see if it is pointed directly at you). The focussing accounts for some part of their perceived brightness, and it would mean we observe only those gamma ray bursts whose light happens to be emitted exactly in the direction of the Earth. The mechanism for this focussing would be, once more, matter moving at relativistic speeds to form some kind of jet. Theoretical models estimate that the matter responsible for the gamma-ray burst emission must be travelling at more than 99.99% of the speed of light.

 

Simulations of how this movement comes about and causes an event as spectacular as a gamma ray burst are, once more, the province of relativistic hydrodynamics. For short gamma ray bursts, these simulations need to track the merger of two orbiting neutron stars. The following animation illustrates one such simulation, where each of the two neutron stars has 1.4 times as much mass as our sun:

 

ns_merger

[Image: M. Shibata, Tokyo University. Animation size 651kB; please allow time for loading.]

Download movie version (mpeg, 6.6MB) here.

 

The final stage of the merger which is shown here would take about 3 thousandth of a second from start to finish. In the animation, the colors encode different densities, while the velocity of matter in different regions is represented by little arrows.

There is an additional aspect to all these astrophysical scenarios: The presence of both relativistic flows and massive yet compact objects turns them into prime candidates for the production of gravitational waves! The possibility of directly detecting these elusive ripples in the curvature of spacetime, and of extracting a wealth of new information from the data, is one of the driving motivations of present-day research in relativistic astrophysics – and faithful modelling of these situations using relativistic hydrodynamics is a key ingredient of successful gravitational wave astronomy!

Man-made relativistic flows

While natural flow processes here on Earth are a far cry from reaching relativistic speeds, there are indeed artificial – man-made – relativistic flows, namely in particle accelerators. One example is the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory in New York, which began operation in 2000, another the Large Hadron Collider (LHC) at CERN near Geneva, which is currently under construction.

In these facilities heavy ions – heavy atomic nuclei, for instance those of gold or lead, stripped of their electrons – are accelerated to ultra-relativistic velocities and made to collide with one another. At RHIC, the projectiles travel at typical speeds of 99.995% the speed of light – at such speed, the relativistic mass of a moving object is more than a hundred times larger than its mass at rest! After the LHC has started its operations in late 2007, there will be the possibility for experiments in which the mass – and energy – will be increased by almost a factor of one hundred.

Heavy-ion collision experiments provide a unique way to compress and heat up nuclear matter, and to prove the existence of an exotic state of ultra-compressed nuclear matter, called a quark-gluon-plasma, which is predicted by the theory of strong nuclear interactions (quantum chromodynamics). They recreate, within a tiny region of space, conditions similar to those under which matter existed in the early universe, fractions of a second after the big bang.

Physicists use several techniques do describe what happens in these collisions. A number of results can be obtained by treating all the particles involved as separate objects. But for other calculations, it is much more useful to treat the dense, strongly interacting matter formed in the collision as a continuous fluid. Of course, given the energies involved, we need to take into account the effects of special relativity. As an example, the following animation shows results of a simulation of a jet – a particle stream produced in such collisions – propagating through a simplified version of such a fluid, producing a Mach cone similar to the sonic boom of a supersonic aircraft:

 

mach_cone

[Animation B. Betz, Goethe-Universität Frankfurt.]

Numerical simulations with relativistic fluid models have proved to be of great help in understanding certain aspects of these highly energetic heavy-ion collisions.

 

Further Information

Relativistic background information for this Spotlight topic can be found in Elementary Einstein, in particular in the chapter Black Holes & Co..

Further related Spotlights on relativity can be found in the category Black Holes & Co..

Further information about some of the animations displayed in this text:

Further simulations from Albert Einstein Institute’s numerical relativity group can be found on the numrel@aei homepage.

A variety of other simulations of merging neutron stars are accessible on Masaru Shibata’s Homepage.

NASA’s Imagine the universe! website has a wealth of accessible material about all areas of astrophysics.

Presentations by Barbara Betz containing further simulations can be downloaded from the Helmholtz Research School Presentation page.

https://www.einstein-online.info/en/spotlight/hydrodynamics_realm/

Réponse  Message 164 de 172 de ce thème 
De: BARILOCHENSE6999 Envoyé: 02/12/2024 14:00
 
 
19:34
 
Does space "flow" like a river? There's an analogy in General Relativity ... Why The Theory of Relativity Doesn't Add Up (In Einstein's Own Words).

Réponse  Message 165 de 172 de ce thème 
De: BARILOCHENSE6999 Envoyé: 02/12/2024 15:23
Is Full-Time Travel As Expensive As You Think? - The Fearless Foreigner
Science in the Bible: The Water Cycle
 
 
19:34
 
Does space "flow" like a river? There's an analogy in General Relativity ... Why The Theory of Relativity Doesn't Add Up (In Einstein's Own Words).

Réponse  Message 166 de 172 de ce thème 
De: BARILOCHENSE6999 Envoyé: 11/12/2024 04:23
The Role Of Banks : Channels for Your Financial Flow | Money As Water

Respuesta  Mensaje 4 de 4 en el tema 
De: BARILOCHENSE6999 Enviado: 10/12/2024 23:50
Money Flows To Me Like Rushing Water - Short Affirmations On Loop - Attract  Abundance

Réponse  Message 167 de 172 de ce thème 
De: BARILOCHENSE6999 Envoyé: 12/12/2024 16:00
Money Flows To Me Like Rushing Water - Short Affirmations On Loop - Attract  Abundance

Respuesta  Mensaje 4 de 4 en el tema 
De: BARILOCHENSE6999 Enviado: 12/12/2024 12:28
Law of Attraction Money Affirmation - Money Flows into Your Life

Réponse  Message 168 de 172 de ce thème 
De: BARILOCHENSE6999 Envoyé: 13/12/2024 03:58
फ़ोटो के बारे में कोई जानकारी नहीं दी गई है.

Réponse  Message 169 de 172 de ce thème 
De: BARILOCHENSE6999 Envoyé: 13/12/2024 04:24
Riparianism – Surface Water Solutions: Consulting and Software Training

Réponse  Message 170 de 172 de ce thème 
De: BARILOCHENSE6999 Envoyé: 14/01/2025 16:24

Earth from Space – Arc de Triomphe, Paris

By Marc Boucher
Status Report
May 13, 2022
Filed under 
Earth from Space – Arc de Triomphe, Paris
Arc de Triomphe, Paris.
ESA

This striking, high-resolution image of the Arc de Triomphe, in Paris, was captured by Planet SkySat – a fleet of satellites that have just joined ESA’s Third Party Mission Programme in April 2022.
The Arc de Triomphe, or in full Arc de Triomphe de l’Étoile, is an iconic symbol of France and one of the world’s best-known commemorative monuments. The triumphal arch was commissioned by Napoleon I in 1806 to celebrate the military achievements of the French armies. Construction of the arch began the following year, on 15 August (Napoleon’s birthday).

The arch stands at the centre of the Place Charles de Gaulle, the meeting point of 12 grand avenues which form a star (or étoile), which is why it is also referred to as the Arch of Triumph of the Star. The arch is 50 m high and 45 m wide.

The names of all French victories and generals are inscribed on the arch’s inner and outer surfaces, while the Tomb of the Unknown Soldier from World War I lies beneath its vault. The tomb’s flame is rekindled every evening as a symbol of the enduring nature of the commemoration and respect shown to those who have fallen in the name of France.

The Arc de Triomphe’s location at the Place Charles de Gaulle places it at the heart of the capital and the western terminus of the Avenue des Champs-Élysées (visible in the bottom-right of the image). Often referred to as the ‘most beautiful avenue in the world’, the Champs-Élysées is known for its theatres, cafés and luxury shops, as the finish of the Tour de France cycling race, as well as for its annual Bastille Day military parade.

 

This image, captured on 9 April 2022, was provided by Planet SkySat – a fleet of 21 very high-resolution satellites capable of collecting images multiple times during the day. SkySat’s satellite imagery, with 50 cm spatial resolution, is high enough to focus on areas of great interest, identifying objects such as vehicles and shipping containers.

SkySat data, along with PlanetScope (both owned and operated by Planet Labs), serve numerous commercial and governmental applications. These data are now available through ESA’s Third Party Mission programme – enabling researchers, scientists and companies from around the world the ability to access Planet’s high-frequency, high-resolution satellite data for non-commercial use.

Within this programme, Planet joins more than 50 other missions to add near-daily PlanetScope imagery, 50 cm SkySat imagery, and RapidEye archive data to this global network.

Peggy Fischer, Mission Manager for ESA’s Third Party Missions, commented, “We are very pleased to welcome PlanetScope and SkySat to ESA’s Third Party Missions portfolio and to begin the distribution of the Planet data through the ESA Earthnet Programme.

“The high-resolution and high-frequency imagery from these satellite constellations will provide an invaluable resource for the European R&D and applications community, greatly benefiting research and business opportunities across a wide range of sectors.”

To find out more on how to apply to the Earthnet Programme and get started with Planet data, click here.

– Download the full high-resolution image.

https://spaceref.com/earth/earth-from-space-arc-de-triomphe-paris/

Respuesta Ocultar Mensaje Eliminar Mensaje  Mensaje 3 de 4 en el tema 
De: BARILOCHENSE6999 Enviado: 13/01/2025 15:53
Foundation stone. On August 15, 1806, Emperor Napoleon I's birthday, the foundation stone of the building was laid at a depth of eight meters, between the two southern pillars.

Respuesta Ocultar Mensaje Eliminar Mensaje  Mensaje 4 de 4 en el tema 
De: BARILOCHENSE6999 Enviado: 14/01/2025 12:48

Enviado: 21/10/2024 10:30
Longview HS Lobo Choir group takes final bow after week in Paris, France
My Favorite Top 12 Experiences in Europe — Dream Destinations
16 ideas de GEOGRAFÍA URBANA | urbano, geografía, ciudades

Respuesta  Mensaje 22 de 22 en el tema 
De: BARILOCHENSE6999 Enviado: 14/01/2025 11:38
Discover the majestic Place de la Concorde in Paris - French Moments
A Guide to the Historical Axis of Paris - French Moments
Paris - La Tour Eiffel - La Madeleine - L'Arc de Triomphe - Les Invali – JH  Postcards
Rue de Rivoli, Arc de Triomphe, Madeleine...Le Paris de Napoléon
Arc de Triomphe de l'Étoile in Paris - fentens Papermodels
 
Arc de Triomphe in Paris
Arc de Triomphe in Paris
Church of Sainte-Marie-Madeleine in Paris
The Great Pyramid and Jesus - Adept Initiates
Historical Axis at Concorde © French Moments

Réponse  Message 171 de 172 de ce thème 
De: BARILOCHENSE6999 Envoyé: 22/01/2025 17:35

Place de la Concorde 

Place de la Concorde - 75008 ParisCampos Eliseos
 
 
La plaza de la Concordia se encuentra al pie de la avenida de los Campos Elíseos y bordea los jardines de las Tullerías. Hoy destaca por el Obelisco de Luxor (que data del año 3.300 a.C. y fue erigido en mayo de 1998), los prestigiosos hoteles que la bordean y sus dos fuentes monumentales (Fontaine des Mers y Fontaine des Fleuves). Creada a finales del siglo XVIII, la plaza de la Concordia fue conocida por ser uno de los lugares de ejecución durante la Revolución Francesa. Luis XVI y María Antonieta (entre otros) fueron guillotinados aquí. Entre 1836 y 1846, el arquitecto Jacques-Ignace Hittorf transformó la plaza en lo que es hoy.

Mapa

Mapa
DIRECCIÓN
 
Place de la Concorde
75008 Paris
https://parisjetaime.com/spa/transporte/place-de-la-concorde-p1981

Réponse  Message 172 de 172 de ce thème 
De: BARILOCHENSE6999 Envoyé: 28/01/2025 16:07

LAST UPDATED: 27 NOVEMBER 2024

You may know Paris for its cathedral Notre-Dame, the Eiffel Tower, its café culture and its amazing museums and art galleries. The French capital is also famous for its fantastic perspective that runs from the Louvre to La Défense. This is the ‘Voie Triomphale’, aka the Historical Axis of Paris.

This line is one of the most prestigious perspectives in the world. In fact, its design has inspired cities such as Buenos Aires, Washington DC, New Delhi and Canberra. In this article, we’ll learn more about the Historical Axis of Paris. We’ll discover the stunning monuments and I reveal to you some stunning facts. 

 

What is the Historical Axis of Paris?

Glass pyramid and the historical axis of Paris © French MomentsThe glass pyramid and the historical axis of Paris © French Moments

The Historical Axis, also known in French as “Axe Historique”, “Voie Triomphale” or “Voie Royale” is orientated on a 26° angle.

It follows the course of the Sun from its rising in the East to its setting in the West.

Oddly, this angle of orientation is the same as that of Paris’ Notre-Dame Cathedral, some 1,000 metres away from the Louvre Palace.

More than just a series of monuments placed along the axis, it seems that a complex symbolism was at work in the mind of the successive urban planners.

Historical Axis Map © French Moments

The Historical Axis runs through some of Paris’ most celebrated monuments and squares:

Let’s move along the Historical Axis of Paris, from East to West, starting from the Louvre.

 

The Palace of the Louvre

Historical Axis at the Louvre © French Moments

Today the great perspective starts at the Louvre, immediately beyond the Church of St Germain l’Auxerrois.

The crab-shaped Palace was the main residence of the kings of France until 1682, when Louis XIV, the ‘Sun King’, moved his court to Versailles. It currently houses one of the world’s most wonderful museums in a complex that is known as the “Grand Louvre”.

The Louvre today © French MomentsThe Louvre today © French Moments

 

The controversial glass pyramid of the Louvre

President François Mitterrand left his mark with his pharaonic project of “Le Grand Louvre”. He wished to complete it for the bicentennial celebration of the French Revolution in 1989. The titanic project comprised of major renovation works and the construction of a new landmark along the Historical Axis: the celebrated (and controversial) Glass Pyramid.

But if you look closer, you’ll notice that the glass pyramid is not aligned with the other monuments on the Historical Axis.

That’s why something had to be added in this vast courtyard of the Louvre…

https://frenchmoments.eu/historical-axis-of-paris-la-voie-triomphale/


Premier  Précédent  158 a 172 de 172  Suivant   Dernier  
Thème précédent  Thème suivant
 
©2025 - Gabitos - Tous droits réservés