|
PARA NO CREER PERO ESTO ES ASI. LA RELACION DEL DINERO / MONEY / MOON / CON LA LUNA EN EL CONTEXTO A LA TRANSFIGURACION EN EL MONTE HERMON / MON / LUNA EN LA TRIBU DE DAN / DINERO / SERPIENTE. TODO ES UN NEXO CON LA TRANSFIGURACION DEL SEÑOR. DINERO ES TIEMPO MISMO.
ES OBVIO EL NEXO DE LA SERPIENTE CON LA MUJER
NOTEN EL NEXO DE DAN, CON LA SERPIENTE (VENECIA) Y EL CABALLO (PLAZA SAN MARCOS)
7. Génesis 49:17 Será Dan SERPIENTE junto al camino, Víbora junto a la senda, Que muerde los talones del caballo, Y hace caer hacia atrás al jinete.
1200
|
|
|
|
Fibonacci 24 Repeating Pattern
May 15, 2012 by Gary Meisner
The Fibonacci sequence has a pattern that repeats every 24 numbers.
Numeric reduction is a technique used in analysis of numbers in which all the digits of a number are added together until only one digit remains. As an example, the numeric reduction of 256 is 4 because 2+5+6=13 and 1+3=4.
Applying numeric reduction to the Fibonacci series produces an infinite series of 24 repeating digits:
1, 1, 2, 3, 5, 8, 4, 3, 7, 1, 8, 9, 8, 8, 7, 6, 4, 1, 5, 6, 2, 8, 1, 9
If you take the first 12 digits and add them to the second twelve digits and apply numeric reduction to the result, you find that they all have a value of 9.
1st 12 numbers |
1 |
1 |
2 |
3 |
5 |
8 |
4 |
3 |
7 |
1 |
8 |
9 |
2nd 12 numbers |
8 |
8 |
7 |
6 |
4 |
1 |
5 |
6 |
2 |
8 |
1 |
9 |
Numeric reduction – Add rows 1 and 2 |
9 |
9 |
9 |
9 |
9 |
9 |
9 |
9 |
9 |
9 |
9 |
18 |
Final numeric reduction – Add digits of result |
9 |
9 |
9 |
9 |
9 |
9 |
9 |
9 |
9 |
9 |
9 |
9 |
This pattern was contributed both by Joseph Turbeville and then again by a mathematician by the name of Jain.
We would expect a pattern to exist in the Fibonacci series since each number in the series encodes the sum of the previous two. What’s not quite so obvious is why this pattern should repeat every 24 numbers or why the first and last half of the series should all add to 9.
For those of you from the “Show Me” state, this pattern of 24 digits is demonstrated in the numeric reduction of the first 73 numbers of the Fibonacci series, as shown below:
Fibonacci Number
|
Numeric reduction by adding digits |
1st Level |
2nd Level |
Final Level |
Example: 2,584 |
2+5+8+4=19 |
1+9=10 |
1+0=1 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
2 |
2 |
2 |
2 |
3 |
3 |
3 |
3 |
5 |
5 |
5 |
5 |
8 |
8 |
8 |
8 |
13 |
4 |
4 |
4 |
21 |
3 |
3 |
3 |
34 |
7 |
7 |
7 |
55 |
10 |
1 |
1 |
89 |
17 |
8 |
8 |
144 |
9 |
9 |
9 |
233 |
8 |
8 |
8 |
377 |
17 |
8 |
8 |
610 |
7 |
7 |
7 |
987 |
24 |
6 |
6 |
1,597 |
22 |
4 |
4 |
2,584 |
19 |
10 |
1 |
4,181 |
14 |
5 |
5 |
6,765 |
24 |
6 |
6 |
10,946 |
20 |
2 |
2 |
17,711 |
17 |
8 |
8 |
28,657 |
28 |
10 |
1 |
46,368 |
27 |
9 |
9 |
75,025 |
19 |
10 |
1 |
121,393 |
19 |
10 |
1 |
196,418 |
29 |
11 |
2 |
317,811 |
21 |
3 |
3 |
514,229 |
23 |
5 |
5 |
832,040 |
17 |
8 |
8 |
1,346,269 |
31 |
4 |
4 |
2,178,309 |
30 |
3 |
3 |
3,524,578 |
34 |
7 |
7 |
5,702,887 |
37 |
10 |
1 |
9,227,465 |
35 |
8 |
8 |
14,930,352 |
27 |
9 |
9 |
24,157,817 |
35 |
8 |
8 |
39,088,169 |
44 |
8 |
8 |
63,245,986 |
43 |
7 |
7 |
102,334,155 |
24 |
6 |
6 |
165,580,141 |
31 |
4 |
4 |
267,914,296 |
46 |
10 |
1 |
433,494,437 |
41 |
5 |
5 |
701,408,733 |
33 |
6 |
6 |
1,134,903,170 |
29 |
11 |
2 |
1,836,311,903 |
35 |
8 |
8 |
2,971,215,073 |
37 |
10 |
1 |
4,807,526,976 |
54 |
9 |
9 |
7,778,742,049 |
55 |
10 |
1 |
12,586,269,025 |
46 |
10 |
1 |
20,365,011,074 |
29 |
11 |
2 |
32,951,280,099 |
48 |
12 |
3 |
53,316,291,173 |
41 |
5 |
5 |
86,267,571,272 |
53 |
8 |
8 |
139,583,862,445 |
58 |
13 |
4 |
225,851,433,717 |
48 |
12 |
3 |
365,435,296,162 |
52 |
7 |
7 |
591,286,729,879 |
73 |
10 |
1 |
956,722,026,041 |
44 |
8 |
8 |
1,548,008,755,920 |
54 |
9 |
9 |
2,504,730,781,961 |
53 |
8 |
8 |
4,052,739,537,881 |
62 |
8 |
8 |
6,557,470,319,842 |
61 |
7 |
7 |
10,610,209,857,723 |
51 |
6 |
6 |
17,167,680,177,565 |
67 |
13 |
4 |
27,777,890,035,288 |
73 |
10 |
1 |
44,945,570,212,853 |
59 |
14 |
5 |
72,723,460,248,141 |
51 |
6 |
6 |
117,669,030,460,994 |
65 |
11 |
2 |
190,392,490,709,135 |
62 |
8 |
8 |
308,061,521,170,129 |
46 |
10 |
1 |
498,454,011,879,264 |
72 |
9 |
9 |
Thanks to Joseph Turbeville for sending “A Glimmer of Light from the Eye of a Giant” and to Helga Hertsig for bringing Jain’s discovery of this pattern to my attention.
Filed Under: Math
https://www.goldennumber.net/fibonacci-24-pattern/ |
|
|
|
Fibonacci Fun
Here are some illustrations by myself and others, dealing with the Fibonacci sequence and the Golden Number, Phi.
![Phibonacci Exponentials Phibonacci Exponentials](https://i2.wp.com/joedubs.com/wp-content/uploads/2016/07/Phibonacci-Exponentials-900x708.png?resize=810%2C637&ssl=1)
A few months ago, I noticed the exponents of Phi encode the Fibonacci sequence.
![Phi Phibonacci exponentials 2 Phi Phibonacci exponentials 2](https://i0.wp.com/joedubs.com/wp-content/uploads/2016/07/Phi-Phibonacci-exponentials-2.jpg?resize=810%2C637&ssl=1)
![Caduceus Phiral Fibonacci Caduceus Phiral Fibonacci](https://i0.wp.com/joedubs.com/wp-content/uploads/2016/08/Caduceus-Phiral-Fibonacci.jpg?resize=810%2C636&ssl=1)
The sequence gets closer to the golden number the larger the numbers get. This will work with any two starting numbers, like say 91 and 432, for example. You’ll find the same ratio emerge if you keep adding them together. (91+432 = 523, then, 432+523=955, etc) Already we are at 1.8 to 1. (955/523) A handful more steps and we’ll have Phi to more than 99.999% accuracy.
![fib_hand fib_hand](https://i1.wp.com/joedubs.com/wp-content/uploads/2017/01/fib_hand.jpg?resize=384%2C254&ssl=1)
???? If you had a million phalanges, your hand would look like King Midas.
![Phi 2 10 2 Phi exponents exponentials Phi 2 10 2 Phi exponents exponentials](https://i2.wp.com/joedubs.com/wp-content/uploads/2016/07/Phi-2-10-2.jpg?resize=810%2C636&ssl=1)
Jain108 made a post on how, if you start with 2 and 10, you arrive at the actual numbers found in the exponents of Phi. Remember exponents are simply the number multiplied by itself n number of times. Phi cubed, or Phi to the third power, is just Phi x Phi x Phi. (1.618 x 1.618 x 1.618 = 4.236) See that was easy, now stop complaining how you’re bad at math.
![Phi Phormulas Phi Phormulas](https://i1.wp.com/joedubs.com/wp-content/uploads/2015/10/Phi-Phormulas.jpg?resize=810%2C636&ssl=1)
Phi to the negative power is the same as saying, one divided by the Phi cubed, or whatever.
Here’s some different ways to say the same thing.
This does an excellent job of explaining where all these freaking numbers come from. (img Scott Onstott)
Circles of Fibonacci. Magenta and green cancel out and make gold
Sam Kutler found the golden number in concentric circles.
The outer ring shows the 24 digit pattern(digital roots), the inner the 60 digit pattern(last number).
Lucien Khan rediscovered the 60 digit repeat pattern.
Fibonacci Patterns
Fibonacci sequence hidden in ordinary division problem: If you divide 1 by 999,999,999,999,999,999,999,999,999,999,999,999,999,999,999,999 (that’s 999 quattuordecillion), the Fibonacci sequence pops out.
![division-fibonacci division-fibonacci](https://i1.wp.com/joedubs.com/wp-content/uploads/2016/08/division-fibonacci.jpg?resize=640%2C526&ssl=1)
Chad Adam’s Extended Fibonacci Series
![chad adams fibonacci chad adams fibonacci](https://i2.wp.com/joedubs.com/wp-content/uploads/2016/08/chad-adams-fibonacci.jpg?resize=810%2C545&ssl=1)
Like I said, you can start a Fibonacci sequence with any two numbers. If you begin with the numbers 1-9, some interesting things happen.
![Geometry Patteer Geometry Patteer](https://i0.wp.com/joedubs.com/wp-content/uploads/2016/08/Geometry-Patteer.png?resize=672%2C900&ssl=1)
by Chad Adams
![Platonic Solids Tetractys Platonic Solids Tetractys](https://i2.wp.com/joedubs.com/wp-content/uploads/2016/08/Platonic-Solids-Tetractys.png?resize=810%2C826&ssl=1)
See how the numbers match up?
The Platonic Solids
![Tetragramatonic Platonic Solids Tetragramatonic Platonic Solids](https://i0.wp.com/joedubs.com/wp-content/uploads/2016/08/Tetragramatonic-Platonic-Solids.jpg?resize=810%2C636&ssl=1)
back to the 60 digit pattern….
The Fibonacci Sequence, starting at the 60th number in the sequence. See the pattern? Just look at the last digit in each number of the sequence. [after 8 is 3 because the last digit in 13(5+8) is 3]
![Extended Fibonacci and 60 Pattern Extended Fibonacci and 60 Pattern](https://i1.wp.com/joedubs.com/wp-content/uploads/2017/01/Extended-Fibonacci-and-60-Pattern.jpg?resize=810%2C335&ssl=1)
The Colorado State Flag
Is it just me or is Colorado’s state seal illuminaty as all hell?
![DIA New World DIA New World](https://i1.wp.com/joedubs.com/wp-content/uploads/2017/01/DIA-New-World.jpg?resize=810%2C500&ssl=1)
Don’t even go to Denver International Airport.
![Colorado Flag Maths Colorado Flag Maths](https://i1.wp.com/joedubs.com/wp-content/uploads/2017/01/Colorado-Flag-Maths.jpg?resize=810%2C540&ssl=1)
I did an article on Decoding the Dollar, and found the leaves on the left side of the buck encode the fib seq. with 2,3,5,8.
![dollar-bill-fibonacci dollar-bill-fibonacci](https://i2.wp.com/joedubs.com/wp-content/uploads/2016/11/Dollar-Bill-Fibonacci.jpg?resize=597%2C483&ssl=1)
![Phibonacci Ratios Phibonacci Ratios](https://i1.wp.com/joedubs.com/wp-content/uploads/2015/10/Phibonacci-Ratios.jpg?resize=810%2C636&ssl=1)
The name ‘Fi-Bonacci'(Man of cheer) comes from Leonardo’s old man who could always make the town laugh.
![Fibonacci's Pi Fibonacci's Pi](https://i1.wp.com/joedubs.com/wp-content/uploads/2015/05/Fibonaccis-Pi.jpg?resize=810%2C636&ssl=1)
Leonardo de Pisa, the guy we call ‘Fibonacci”, actually had his own value for π, which was 864/275, or 3.141818181818…. (Phi = 1.618..)
![Fibonacci 1 Fibonacci 1](https://i2.wp.com/joedubs.com/wp-content/uploads/2015/10/Fibonacci-1.jpg?resize=810%2C459&ssl=1)
![Fibonacci and 89 Fibonacci and 89](https://i2.wp.com/joedubs.com/wp-content/uploads/2015/05/Fibonacci-and-891.jpg?resize=810%2C636&ssl=1)
I talk about this more here..
The Fibonacci numbers reduced to one digit through digital parity. (21 is 3 because 2+1=3)
This is the number and sequence of numbers that God choose to use to structure all life and creation.
https://joedubs.com/fibonacci-fun/ |
|
|
|
LA MANZANA, EN EL MARCO AL ESCARABAJO, OSEA UNA REFERENCIA AL ESCORPION, OSEA APOCALIPSIS 12 ESPECIFICAMENTE Y A LA FLEUR DE LIS, EN EL MARCO AL CODIGO DA VINCI. TODOS LOS CAMINOS CONDUCEN A ROMA
¿PAUL MCCARTNEY MURIO UN 911?
|
|
|
![Resultado de imagen para PAUL MCCARTNEY 9 DE NOVIEMBRE](https://image.slidesharecdn.com/incrediblethebeatlesbestkeptsecret-130719132228-phpapp01/95/incredible-the-beatles-best-kept-secret-the-biggest-hoax-1-638.jpg?cb=1374240220)
|
|
|
|
|
|
|
Check this out! The fibonacci sequence; #, Full Value, Decimal Parity Value 1 1 1 2 1 1 3 2 2 4 3 3 5 5 5 6 8 8 7 13 4 8 21 3 9 34 7 10 55 1 11 89 8 12 144 9 13 233 8 14 377 8 15 610 7 16 987 6 17 1597 4 18 2584 1 19 4181 5 20 6765 6 21 10946 2 22 17711 8 23 28657 1 24 46368 9 25 75025 1 26 121393 1 27 196418 2 28 317811 3 29 514229 5 30 832040 8 31 1346269 4 32 2178309 3 33 3524578 7 34 5702887 1 35 9227465 8 36 14930352 9 37 24157817 8 38 39088169 8 39 63245986 7 40 102334155 6 41 165580141 4 42 267914296 1 43 433494437 5 44 701408733 6 45 1134903170 2 46 1836311903 8 47 2971215073 1 48 4807526976 9 It repeats fully in lots of 24 or half in 12! It's more obvious if I re-number the positions by 12's. (btw, 12 is a second generation 3) Just match the positions and observe the symmetry around 9 once more... 1 1 1 2 1 1 3 2 2 4 3 3 5 5 5 6 8 8 7 13 4 8 21 3 9 34 7 10 55 1 11 89 8 12 144 9 1 233 8 2 377 8 3 610 7 4 987 6 5 1597 5 6 2584 1 7 4181 5 8 6765 6 9 10946 2 10 17711 8 11 28657 1 12 46368 9 -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- 1 75025 1 2 121393 1 3 196418 2 4 317811 3 5 514229 5 6 832040 8 7 1346269 4 8 2178309 3 9 3524578 7 10 5702887 1 11 9227465 8 12 14930352 9 1 24157817 8 2 39088169 8 3 63245986 7 4 102334155 6 5 165580141 4 6 267914296 1 7 433494437 5 8 701408733 6 9 1134903170 2 10 1836311903 8 11 2971215073 1 12 4807526976 9 ![Big Grin](https://forum.davidicke.com/images/smilies/biggrin.gif) It's hard to display in this forum setting but hopefully you can see what I am doing here. The decimal parity reveals the harmonics and the harmonics repeat every 24 positions.
__________________ Squeegee your third-fucking-eye-(Bill Hicks)
|
|
|
|
![](http://h24-original.s3.amazonaws.com/208894/19029775-ZURgP.jpg)
![](http://image.slidesharecdn.com/trinidadbiblicaoanti-biblica-101214195500-phpapp01/95/trinidad-biblica-o-anti-biblica-2-728.jpg?cb=1292424224)
https://es.wikipedia.org/wiki/Albert_Einstein
Albert Einstein (en alemán [ˈalbɛɐ̯t ˈaɪnʃtaɪn]; Ulm, Imperio alemán, 14 de marzo de ... En 1915 presentó la teoría de la relatividad general, en la que reformuló por completo el concepto de gravedad. ...... Einstein, Albert (1905e) [manuscrito recibido 27 de septiembre 1905], «Ist die Trägheit eines Körpers von seinem ...
rpp.pe › Lima
27 sep. 2015 - ... primera vez su Teoría de la Relatividad Especial, también llamada restringida; y en 1960, muere el ... 27 de septiembre del 2015 - 12:01 AM ...
ar.tuhistory.com/etiquetas/teoria-de-la-relatividad
Albert Einstein publica la teoría general de la relatividad ... De la teoría especial de la relatividad se deduce su famosa ecuación E=mc2, ... 27-09-1905 D.C..
https://www.gabitos.com/DESENMASCARANDO_LAS_FALSAS.../template.php?...
7 ene. 2014 - En 1905 Einstein publicó su teoría de la relatividad especial, que ...... Einstein presentó a los editores de Annalen el 27 de septiembre del ...
MATT 16:18 is an in your face glyph for the golden mean ratio 1.618
(“MATT” is pun of “MATTER”)
Golden Mean ratio of 1.618
The Golden Mean and the Equilateral Triangle in a Circle; THE CRUCIAL FACT IS THE MIDPOINT OF THE TRIANGLE SIDE
Star Tetrahedron, formed by the MIDPOINTS OF THE CENTRAL EQUILATERAL TRIANGLE (the blue and rose colored lines indicate these midpoint halves)
Saint Mary Magdalene in Venice
![Image](http://farm4.static.flickr.com/3408/3201834964_c9472948ce.jpg) A closer look ![Image](http://freemasonrywatch.org/pics/stmagdalene.venice2.jpg)
![Image](http://upload.wikimedia.org/wikipedia/commons/thumb/1/11/Sterappel_dwarsdrsn.jpg/242px-Sterappel_dwarsdrsn.jpg) the Apple
|
|
|
Primer
Anterior
9 a 23 de 38
Siguiente
Último
|