الصفحة الرئيسية  |  إتصال  

البريد الإلكتروني

كلمة السر:

سجّل نفسك الآن

هل نسيت كلمتك السر؟

El Ojo de la Luz
 
مستجدات
  أدخل الآن
  جدول الرسائل 
  معرض الصور 
 الملفات والوتائق 
 الإحصاء والنص 
  قائمة المشاركين
 Videos 
 General 
 13 Lunas 
 Año 2012 
 Actitud y Pensar 
 ADN-DNA 
 Agua diamantina 
 Angeles 
 Astral 
 Astrologia 
 Auras 
 Ayurveda 
 Biblioteca 
 Biografias 
 Budismo 
 Canalizaciones 
 Chakras 
 Ciencia y Cosmos 
 Civilizaciones 
 Cristales 
 Crop Circles 
 Dioses 
 Energia 
 Enigmas 
 Feng Shui 
 Flores de Bach 
 Frases y Reflexiones 
 Gaia_Tierra 
 Geometria Sagrada 
 Lugares de Poder 
 Luz y Color 
 Meditación 
 Mitos y Leyendas 
 Mancias y Rituales 
 Mandalas 
 Mantras 
 Merkaba 
 Mudras 
 Niños Indigo 
 Numerologia 
 Orar_ 
 OVNIS 
 Plantas 
 Profecias 
 Reiki 
 Religión 
 Salud y Sanación 
 Sonido 
 Sueños 
 Taichi & Kung 
 Talismanes y Simbolos 
 BUSCADOR 
 
 
  أدوات
 
Geometria Sagrada: Polígonos Estrellados.
إختار ملف آخر للرسائل
الفقرة السابقة  الفقرة التالية
جواب  رسائل 1 من 1 في الفقرة 
من: Thenard  (الرسالة الأصلية) مبعوث: 17/06/2010 21:35
Polígonos Estrellados.  
Si al dividir una circunferencia en partes iguales unimos los puntos de división de dos en dos, de tres en tres, etc. y al cerrarse la poligonal hemos recorrido la circunferencia un número entero de veces, obtenemos un polígono regular estrellado.
Puede probarse que para obtener un polígono regular estrellado de n lados (la circunferencia estará dividida en n partes iguales) uniendo las divisiones de a en a, es necesario (y suficiente) que a y n sean primos.
Como unir divisiones de a en a es igual que dividirlas de n - a en n - a (es decir de a en a en sentido contrario), se podrán construir polígonos estrellados considerando los números menores que n/2, que sean primos con n.

Pentágono regular estrellado
El número primo con 5 menor que 5/2 es 2; podemos construir el pentágono estrellado uniendo las divisiones de dos en dos. Obtenemos de esta forma el más popular de los polígonos estrellados y, posiblemente, el emblema de la escuela pitagórica. En él el número áureo aparece por doquier.
Pentagrama
No existen polígonos estrellados de 6 lados, ya que no existe ningún número primo con 6 menor que 6/2.

Heptágonos regulares estrellados
Existen dos números primos con 7 menores que 7/2, el 2 y el 3. Podemos, por tanto, construir dos heptágonos regulares estrellados uniendo las divisiones de 2 en 2 y otro de 3 en 3.

Siete2 Siete3

Octógono regular estrellado
3 es el único número primo con 8 menor que 8/2. Uniendo las divisiones de 3 en 3 obtenemos el octógono regular estrellado.

ocho3

Eneágonos regulares estrellados
2 y 4 son primos con 9 menores que 9/2. Podemos construir dos polígonos regulares estrellados de 9 lados uniendo las divisiones de 2 en 2 y de 4 en 4.

nueve2 nueve4

Decágono regular estrellado
Por último, uniendo de 3 en 3 obtenemos el decágono regular estrellado. En él también "aparece" el número áureo.

diez3
  El Pentagrama y el Número Áureo  
El lema de la Escuela Pitagórica fue todo es número y su emblema el pentagrama o pentágono regular estrellado. En el pentágono estrellado figura el número áureo infinidad de veces.
Veamos qué relación existe entre el pentágono regular y el pentágono regular estrellado.

Si consideramos el lado del pentágono la unidad, basta aplicar el teorema del coseno al triángulo ABC y resulta que AC es igual al número áureo.

El teorema del coseno afirma que en todo triágulo un lado al cuadrado es igual a la suma de los cuadrados de los otros dos lados menos el doble producto de ellos por el coseno del águlo comprendido.
En nuestro caso, aplicando dicho teorema al triángulo ABC, tendremos:

AC 2 = AB 2 + BC 2 - 2 AB. AC. cos (108)
y como AB = BC = 1, efectuando operaciones resulta:
AC 2 = 2 - 2 cos (108)
Extrayendo la raiz cuadrada:
AC = 1,6180340...
Considerando el lado del pentágono regular la unidad, (AG = 1), pueden obtenerse de forma inmediata las siguientes expresiones:
Fi

¿ Qué pudo hacer que los pitagóricos sintieran tanta admiración por el número áureo ?.
Casi con toda seguridad, para la escuela pitagórica la consideración del irracional 5 1/2, de cuya existencia tuvieron conciencia antes que de 2 1/2, tuvo que causar una profunda reflexión en las teorías de la secta.

Si tienes alguna duda de las relaciones del número áureo con el pentágono estrellado ... ¡mira!, y así hasta el infinito. Siempre que encuentres un pentágono regular podrás hacer lo mismo.



أول  سابق  بدون إجابة  لاحق   آخر  

 
©2025 - Gabitos - كل الحقوق محفوظة