Polígonos Estrellados.
Si al dividir una circunferencia en partes iguales unimos los puntos de división de dos en dos, de tres en tres, etc. y al cerrarse la poligonal hemos recorrido la circunferencia un número entero de veces, obtenemos un polígono regular estrellado. Puede probarse que para obtener un polígono regular estrellado de n lados (la circunferencia estará dividida en n partes iguales) uniendo las divisiones de a en a, es necesario (y suficiente) que a y n sean primos. Como unir divisiones de a en a es igual que dividirlas de n - a en n - a (es decir de a en a en sentido contrario), se podrán construir polígonos estrellados considerando los números menores que n/2, que sean primos con n. |
Pentágono regular estrellado El número primo con 5 menor que 5/2 es 2; podemos construir el pentágono estrellado uniendo las divisiones de dos en dos. Obtenemos de esta forma el más popular de los polígonos estrellados y, posiblemente, el emblema de la escuela pitagórica. En él el número áureo aparece por doquier. |
|
No existen polígonos estrellados de 6 lados, ya que no existe ningún número primo con 6 menor que 6/2. |
Heptágonos regulares estrellados Existen dos números primos con 7 menores que 7/2, el 2 y el 3. Podemos, por tanto, construir dos heptágonos regulares estrellados uniendo las divisiones de 2 en 2 y otro de 3 en 3.
|
|
|
Octógono regular estrellado 3 es el único número primo con 8 menor que 8/2. Uniendo las divisiones de 3 en 3 obtenemos el octógono regular estrellado.
|
|
Eneágonos regulares estrellados 2 y 4 son primos con 9 menores que 9/2. Podemos construir dos polígonos regulares estrellados de 9 lados uniendo las divisiones de 2 en 2 y de 4 en 4.
|
|
|
Decágono regular estrellado Por último, uniendo de 3 en 3 obtenemos el decágono regular estrellado. En él también "aparece" el número áureo.
|
|
El Pentagrama y el Número Áureo El lema de la Escuela Pitagórica fue todo es número y su emblema el pentagrama o pentágono regular estrellado. En el pentágono estrellado figura el número áureo infinidad de veces. |
|
Veamos qué relación existe entre el pentágono regular y el pentágono regular estrellado.
Si consideramos el lado del pentágono la unidad, basta aplicar el teorema del coseno al triángulo ABC y resulta que AC es igual al número áureo.
El teorema del coseno afirma que en todo triágulo un lado al cuadrado es igual a la suma de los cuadrados de los otros dos lados menos el doble producto de ellos por el coseno del águlo comprendido. En nuestro caso, aplicando dicho teorema al triángulo ABC, tendremos:
AC 2 = AB 2 + BC 2 - 2 AB. AC. cos (108)
y como AB = BC = 1, efectuando operaciones resulta:
AC 2 = 2 - 2 cos (108)
Extrayendo la raiz cuadrada:
AC = 1,6180340...
|
|
Considerando el lado del pentágono regular la unidad, (AG = 1), pueden obtenerse de forma inmediata las siguientes expresiones: |
|
¿ Qué pudo hacer que los pitagóricos sintieran tanta admiración por el número áureo ?. Casi con toda seguridad, para la escuela pitagórica la consideración del irracional 5 1/2, de cuya existencia tuvieron conciencia antes que de 2 1/2, tuvo que causar una profunda reflexión en las teorías de la secta.
Si tienes alguna duda de las relaciones del número áureo con el pentágono estrellado ... ¡mira!, y así hasta el infinito. Siempre que encuentres un pentágono regular podrás hacer lo mismo.
|
|